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Guidelines for Accepting Water into the Friant-Kern Canal 

Overview 

These Guidelines apply to all water introduced into the Friant-Kern Canal (“FKC”) other than directly 
from Millerton Lake to the headworks of the FKC (collectively, “Non-Millerton water”).  

These Guidelines describe the Friant Water Authority’s (“FWA”) application review process, 
implementation procedures, and the responsibilities of water contractors and other parties authorized to 
introduce or receive Non-Millerton water into or from the FKC (collectively, “Contractors”). These 
Guidelines define the water quality thresholds and the required mitigation associated with introduced 
Non-Millerton water and corresponding water quality, as well as the methodologies and tools for 
monitoring and forecasting water quality in the FKC. These Guidelines are intended to ensure that water 
quality is protected for sustained domestic and agricultural use.  

These Guidelines are applicable to all Non-Millerton water introduced or diverted into the FKC including 
but not limited to: 

• Groundwater pump-ins (e.g., groundwater wells or previously banked water) 

• Surface water diversions and pump-ins 

• Recaptured and recirculated San Joaquin River Restoration Program Restoration Flows 

• Water introduced at the FKC-Cross Valley Canal (“CVC”) intertie and delivered via reverse flow 
on the FKC 

A Water Quality Advisory Committee composed of Friant Division long-term contractors (“Friant 
Contractors”) involved in either introducing or receiving Non-Millerton water to or from the FKC has 
been established to provide recommendations to FWA on operations and monitoring requirements of the 
FKC. The Water Quality Advisory Committee will operate under an established charter (see Attachment 
A).  The Water Quality Advisory Committee will appoint a Monitoring Subcommittee to assist FWA in 
the implementation of the Guidelines. 

These Guidelines are subject to review and modification by FWA if any of the following conditions 
occurs: 

• A future regulatory cost or equivalent fee is imposed on Friant Contractors and a portion of such 
fee can reasonably be attributed to the incremental difference of water quality conditions in the 
FKC. 

• When Friant Division Class 1 contract allocation is less than or equal to 25 percent, the Water 
Quality Advisory Committee will convene as outlined in Attachment A. In these years, mitigation 
will be accounted for as presented in these Guidelines, but will be deferred to a mutually agreed 
to later date unless those responsible for the put and take mutually agree to put and take the 
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mitigation in the critical year. All monitoring requirements will remain as presented in these 
Guidelines.   

• There is a significant, regulatory change or scientifically based justification and three out of the 
following five Friant Contractors agree and work with the Water Quality Advisory Committee to 
recommend a change: (1) Arvin-Edison Water Storage District, (2) Shafter Wasco Irrigation 
District, (3) Delano-Earlimart Irrigation District, (4) South San Joaquin Municipal Utility District, 
and (5) Kern-Tulare Water District. 

The Bureau of Reclamation (Reclamation) may also propose and/or require modifications to these 
Guidelines in coordination with FWA and reserves the right to implement additional water quality 
requirements as needed to protect water quality within the FKC. FWA will provide written notice of any 
proposed modification that are relevant to these Guidelines to all Contractors prior to adoption and 
implementation.  

A. General Requirements for Discharge of Water into the Friant-Kern Canal 

1. Guidelines Compliance Determination 

A Contractor wishing to discharge Non-Millerton water into the FKC must, concurrent with its application 
for a contract or other applicable approval from Reclamation in such form and contents as may be 
required by Reclamation, obtain a determination from FWA as to compliance with the Guidelines or 
demonstrate to FWA and Reclamation that the proposed discharge will be subject to comparable and 
adequate alternative water quality mitigation measures.  The application will not be approved until FWA 
has provided its determination that the applicant is compliant with the Guidelines or the provision of 
alternative mitigation measures is adequately demonstrated and incorporated into the proposed discharge 
project. Figure 1 shows the concurrent process that a Contractor must pursue to obtain these approvals. 
The Contractor will be responsible for securing all other requisite Federal, State or local permits. 
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Figure 1. Approval Process Diagram 

2. Discharge Facility Approval 

The approvals for the erection and maintenance of each discharge facility into the FKC must be approved 
and documented in the manner required by Reclamation, in coordination with FWA.  

3. Other Discharge and Conveyance Requirements 

The discharge of Non-Millerton water into the FKC may not in any way limit the ability of either FWA or 
Reclamation to operate and maintain the FKC for its intended purpose nor may it adversely impact 
existing water delivery contracts or any other water supply or delivery agreements. The discharge of Non-
Millerton water into the FKC will be permissible only when there is capacity in the system as determined 
by FWA and/or Reclamation. 

B. Water Quality Monitoring and Reporting Requirements 

1. General Discharge Approval Requirements 

Each source of Non-Millerton water discharged into the FKC must be correctly sampled, completely 
analyzed, and approved by FWA and Reclamation prior to introduction into the FKC. The Contractor 
must pay the cost of collection and analyses of the water required under these Guidelines. Other costs 
associated with the implementation of these Guidelines to be paid by the Contractors are described in 
Section E below.  
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2. Water Quality Monitoring and Management 

The monitoring program requirements are detailed below. In addition, the requirements are summarized 
in a single table in Attachment B.  

(a) Monitoring Requirements for Discharged Water 

Prior to introduction to the FKC, all Non-Millerton water discharged into the FKC must be tested at the 
source (i.e., grab samples at each pump location for groundwater pump-ins or in-prism (i.e., in-situ) grab 
samples for water being introduced via other conveyances) and sampled by an appropriate party every 
three years for the complete list of water quality constituents listed in the then current version of Table 1. 
In addition, all Non-Millerton water discharged into the FKC must be tested and sampled by an 
appropriate party annually for the short list of water quality constituents listed in Table 4. The analytical 
laboratory must be a facility with Environmental Laboratory Accreditation Program (ELAP) certification. 
The laboratory analytical report and summary of water quality analytical results must be reported to FWA 
and Reclamation’s Contracting Officer (i.e., the Area Manager for the South-Central California Area 
Office) for review. All monitoring requirements are summarized in Attachment B.  

If analytical results show an exceedance of 80% of the threshold for any water quality constituents, 
defined in Table 4, discharged Non-Millerton water will be tested weekly for the targeted constituents of 
concern until four consecutive grab samples show consistent water quality results. The appropriateness of 
the threshold buffer (i.e., 80% of the threshold) will be evaluated by the Water Quality Advisory 
Committee. 

If the water quality analytical results show exceedance of any constituent above its threshold in Table 1, 3 
or 4 (i.e., not the threshold buffer but the threshold itself), at the discretion of Reclamation such water 
may not be allowed to be introduced into the FKC. FWA will evaluate monitoring requirements on a 
case-by-case basis and may impose additional requirements including but not limited to monitoring of the 
discharge source and downstream in prism quality at the cost of the Contractor.  

(b) In-Prism Water Quality Monitoring 

FWA will cause to be implemented continuous, real-time monitoring of in-prism water quality conditions 
in the FKC. Conductivity meters (or sondes) will measure and record real-time in-prism electrical 
conductivity (“EC”), measured as microsiemens per centimeter (µS/cm), every 15 minutes at the FKC 
check structures and corresponding mileposts shown in Table 2. Collected EC data will be uploaded to 
FWA’s Intellisite Operation System (IOS) in real-time. These continuous, in-prism measurements of EC 
will provide real-time data on incremental water quality changes and mixing in the canal and will assist in 
water quality threshold management.  

If the Friant Water Quality Model forecasts an in-prism exceedance of 80% of the threshold for any water 
quality constituents, defined in Table 4, water samples from the FKC will be collected each week by 
appropriate FWA staff until the sampled concentrations, supported through Friant Water Quality Model 
forecasted simulations, show four consecutive weeks below the 80% threshold. Each weekly collection 
will consist of one sample from each downstream check structure shown in Table 2 and where water 
quality changes are expected, plus one duplicate sample. FWA will deliver the samples to a laboratory 
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with ELAP certification. FWA expenses for all water quality monitoring and sampling are subject to 
reimbursement from Contractors through fees and charges. As was the case for the discharged water, the 
appropriateness of the threshold buffer will be evaluated by the Water Quality Advisory Committee. 

Additional water quality sampling and analysis will be performed during specific FKC operations. FWA 
will cause to be measured EC using hand-held conductivity meters as needed, such as during: 

• servicing of real-time monitoring equipment; 

• unexpected real-time monitoring equipment outages; 

• confirmation of real-time monitoring equipment measurements; and, 

• targeted in-prism measurements. 

(c) CVC In-Prism Water Quality Monitoring 

Upon initiation of reverse-flow, pump-back activities and/or if it is anticipated that operations within the 
CVC will significantly change mixed water quality conditions (i.e., influence from California Aqueduct, 
Kern River, Kern Fan), grab samples will be collected by FWA within the CVC near the FKC/CVC 
Intertie, and provided to a third-party laboratory with ELAP certification for testing of water quality 
constituents listed in Table 1. In addition, during reverse-flow pump-back operations, weekly water 
quality sampling will be performed within the CVC near the FKC/CVC Intertie. Grab samples will be 
collected by FWA and provided to a third-party, ELAP certified laboratory for testing. At a minimum, 
grab samples collected during reverse-flow pump-back operations will be analyzed for the short list of 
water quality constituents listed in Table 4. 

The Water Quality Advisory Committee will evaluate water quality monitoring, sampling, and analysis 
requirements on a regular basis and provide recommendations for modification of the described 
requirements. 

(d) In-Prism Water Quality Management  

FKC in prism water quality will be managed per the following thresholds. If the below thresholds are 
exceeded, systematic cessation of pump-in or pump-back operations will occur. 

1. Title 22. The Domestic Water Quality and Monitoring Regulations specified by the State of 
California Health and Safety Code (Sections 116270-116755), and Title 22 of the California Code 
of Regulations (Sections 6440 et seq.), as amended. In prism water quality constituent 
concentrations may not exceed the Maximum Contaminant Level (MCL) as defined in Table 1, 
except those constituents listed in Table 3 and Table 4. Current State of California requirements 
at the time of sampling will prevail over those in the accepted version of this document if MCLs 
in Table 1 are changed in the future. 

2. Water quality thresholds defined in Table 3. Water quality thresholds are representative of 
constituent thresholds of sensitive crops; leaching requirements; and crop thresholds for regulated 
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deficit irrigation practices that occur during almond hull split from July 1 through August 31; and 
flexible thresholds in the second half of the contract year, from September 1 through February 28, 
depending on observed water quality in the first portion of the contract year. 

i. Table 3 presents alternative water quality thresholds for Period 3 (September 1 – February 
28) that are dependent on the measured water quality during Period 1 (March 1 – June 30). If 
the measured average chloride concentration for Period 1 exceeds 70 milligrams per liter 
(mg/L), the chloride threshold remains at 102 mg/L for Period 3a. If the measured average 
chloride concentrations for Period 1 are less than or equal to 70 mg/L, the allowable chloride 
concentration increases from 102 mg/L to 123 mg/L for Period 3b. 

ii. It is estimated that an average of one week is required for in-prism water quality to turnover. 
Prior to the onset of the defined hull split period requirements (July 1), current FKC 
operations and water quality conditions will be evaluated to determine if this one-week period 
should be adjusted. 

If water quality thresholds are exceeded, or based on modeling appear likely to be imminently exceeded, 
or operations in the FKC need to change per Guidelines requirements, FWA will immediately notify the 
Water Quality Advisory Committee, which must convene a meeting of the Monitoring Subcommittee 
within three days of receiving notification from FWA. The Monitoring Subcommittee and FWA will 
review operations and water quality data and will seek consensus on determining the best management 
actions to improve water quality; provided, however, the final operational decision will be made by FWA. 
In addition, the Monitoring Subcommittee will seek 1:1, unleveraged, and cost-neutral exchanges to limit 
potential Project water impacts. Notwithstanding the foregoing, FWA retains the right to determine and 
take immediate management actions with respect to groundwater pump-ins in accordance with the 
applicable approvals, but will work in good faith with the Water Quality Advisory Committee and 
Monitoring Subcommittee to evaluate options. If required, management actions including any reductions 
or cessation of pump-in volume must occur within three days of the meeting between FWA and the 
Monitoring Subcommittee. FWA will order any reduction in pump-in volume in order of greatest mass 
loading. Finally, the Monitoring Subcommittee will set an appropriate review period to assess if 
implemented management actions are working and, if not, will agree to reconvene to discuss additional 
actions necessary to improve water quality. 

(e) Uncontrolled Season  

Non-Millerton water may not be introduced to the FKC during the Friant Division uncontrolled season as 
declared by Reclamation unless:  

• Deliveries are necessary due to FKC capacity constraints, and if the Non-Millerton water 
delivered from the CVC remains below the Shafter Check, or  

• The Non-Millerton water is below the determined baseline EC threshold of 200 μS/cm and, 
therefore, does not require mitigation. 

• Introduction of Non-Millerton water does not impact Friant Division flood operations. 
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3. Water Quality Mitigation 

Mitigation for impacted water quality is quantified through use of the Water Quality Mitigation Ledger 
(“Ledger”). The Ledger tracks and accounts for all inflows into and diversions from the FKC in order to 
determine appropriate mitigation for impacted water quality (attributable to the introduced Non-Millerton 
water or “Put”1). The volume of additional surface water needed for mitigation, expressed as a percentage 
of the introduced water, or Put, is determined using an established mitigation rating curve. The mitigation 
rating curve is based on (1) constituent concentrations, and (2) agronomic principles that focus on 
leaching requirements to prevent constituent accumulation in the rootzone and resulting impacts on crops. 
This approach aims to balance concerns related to long-term groundwater quality with a multi-layered 
assessment of agronomic impacts as a durable solution. The process for developing the agronomic 
impacts evaluation and mitigation rating curve can be found in Attachment C– Agronomic Impacts and 
Mitigation.  

The Ledger quantifies mitigation for Friant Contractors that have an expectation to receive water 
consistent with quality conditions of Millerton Lake. Specifically, mitigation applies to the “Take” (or 
delivery) of Friant Division Class 1, Class 2, Recovered Water Account (RWA [Paragraph 16b]), and 
Unreleased Restoration Flows supplies. Friant Contractors and/or other Contractors, including but not 
limited to third parties, whose supplies are not delivered to the headworks of the FKC are not eligible to 
receive mitigation. 

Mitigation percentage is based on the EC of the Put above the established baseline. The established 
baseline is based on assumptions of current, minimum leaching practices by water users, or growers, in 
the region. Consistent with good agricultural practices, it is assumed that growers are currently applying 
at least a five percent (5%) leaching fraction. Under the mitigation rating curve shown in Figure 2, this 
corresponds to an approximate EC of 200 µS/cm. It is assumed that growers are already managing the 
effects of applied water quality conditions up to 200 µS/cm of EC, and mitigation is only required for 
water quality conditions with incremental EC that exceed the baseline EC threshold of 200 µS/cm. Note 
that the mitigation rating curve extends beyond the maximum EC and mitigation percentage shown in 
Figure 2 (i.e., at 1,000 µS/cm and 25%) at the same slope of 5% mitigation per 200 µS/cm of EC. 

A mitigation volume is calculated based on the Put volume and corresponding mitigation percentage. 
Mitigation volumes for each Put are distributed to each Friant Contractor receiving an eligible Take, or 
“Taker,” downstream based on the volumetric proportion of the Take on a weekly basis. Mitigation 
occurs in real time by the Contractor and offsets a like volume of each Taker’s supply at the end of a 
reporting period. Additional mitigation is not required to account for the water quality conditions of the 
mitigation volumes. Water quality conditions and flows are tracked daily. The ledger and required 
mitigation volumes are balanced weekly and reported and transferred monthly. Accounting and reporting 
are detailed in Attachment D – Standard Operating Procedures. 

 
1 Existing FKC inlet drains are exempt from providing mitigation. 
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Key: 
µS/cm = microsiemens per centimeter (1 µS/cm = 1 µmhos/cm = 1/1,000 dS/m) 
Figure 2. Proposed Mitigation Rating Curve Based on Boron Sensitivity and Normalized to Electrical 
Conductivity 

4. Critical Year Management 

When Friant Division Class 1 contract allocation is less than or equal to 25 percent, the Water Quality 
Advisory Committee will convene as outlined in Attachment A. In these years, mitigation will be 
accounted for as presented in these Guidelines, but will be deferred to a mutually agreed later date unless 
those responsible for the Put and Take mutually agree to put and take the mitigation in the critical year. 
All monitoring requirements will remain as presented in these Guidelines. 

C. Resolution of Disputes 

In the event a Contractor is dissatisfied with the application or interpretation of these Guidelines by FWA 
staff or consultants, the following dispute resolution procedures will apply: 

1. A Contractor may request FWA refer the dispute to Reclamation’s Contracting Officer’s 
Representative for initial review.  FWA will prepare and deliver a written summary of the dispute 
for Reclamation’s Contracting Officer’s Representative, who will then confer with the parties and 
issue an advisory opinion regarding the dispute in a timely manner. 

2. In addition to or in lieu of the meet and confer process with Reclamation’s Contracting Officer’s 
Representative above, a Contractor may submit a written appeal to be heard by the FWA Board 
of Directors.  The written appeal must be submitted to the office of the Chief Executive Officer, 
who will then place the dispute on the agenda of the Board of Directors for a hearing at a board 
meeting no later than 60 days from the date of receipt.  The decision of the Board of Directors 
will be final and FWA and the other party(ies) must promptly comply with such decision until the 
same is stayed, reversed, or modified by a decision of a court of competent jurisdiction. 
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The Cooperative Agreement between the Contractors and FWA provides additional dispute resolution 
procedures.  In the event of any conflict between the dispute resolution procedures in these Guidelines 
and the Cooperative Agreement, the provisions in the Cooperative Agreement will control. 

D. Water Quality Forecasting and Communications 

1. Friant-Kern Canal Water Quality Model 

Water quality monitoring and collection of water quality data will be evaluated using the FKC Water 
Quality Model, a volumetric mass-balance model of the entire FKC. The FKC Water Quality Model will 
serve as a predictive, water quality forecast tool to assist Friant Contractors and FWA in making real-time 
operation decisions. The weekly application of this model will require compilation of surface water 
quality data collected, as described above, as well as forecasts of water orders and periodic model 
updates.  

2. Water quality reporting and communications 

IOS will report real-time, continuous FKC in-prism EC measurements. In addition, FWA will cause to be 
provided a weekly summary report to Friant Contractors and Reclamation on: 

• FKC current and forecasted operations; 

• FKC current in-prism monitoring and forecasted water quality conditions; and, 

• Pertinent pump-in programs’ operations and water quality conditions. 

E. Implementation Responsibilities and Costs 

FWA will be responsible for the following actions: 

• Maintain and calibrate conductivity meters  

• Perform water quality sampling during pump-in operations 

• Coordinate laboratory water quality testing  

• Coordinate with Contractors on water quality data monitoring and analysis 

• Manage in-prism water quality and manage operations database  

• Perform weekly water quality reporting and forecasting using FKC Water Quality Model 

• Perform weekly analysis to determine mitigation and distribution to respective Friant Contractors 
or any other Contractor party(ies) using the FKC Water Quality Mitigation Ledger 

• Coordinate with Reclamation’s SCCAO on water quality reporting, mitigation, and contractual 
requirements 
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• Coordinate and facilitate the work of Water Quality Advisory Committee and the Monitoring 
Subcommittee.  

Costs for implementation and administration of these Guidelines will be initially paid out of the FWA 
Operation, Maintenance, and Replacement (OM&R) budget, and subsequently will be reimbursed by 
Contractors. The Contractor will pay a dollar per acre-foot ($/acre-foot) surcharge (“Guidelines 
Surcharge”) for introduced Non-Millerton water, that will be credited to the FWA OM&R budget. The 
Guidelines Surcharge will be adopted by the FWA Board of Directors and will be based on an estimate of 
total annual costs divided by average annual deliveries of pump-in programs into the FKC. The 
Guidelines Surcharge will be applied to all introduced Non-Millerton water even if mitigation is not 
required  

Annual costs and deliveries will be reassessed every year and compared to estimates provided in 
Attachment E to determine if any adjustments are required to the Guidelines Surcharge. 
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Definitions 

Contractors: Water contractors and other parties authorized to introduce or receive Non-Millerton water 
into or from the FKC. 

Contracting Officer:  The Area Manager of Reclamation’s South-Central California Area Office. 

Cooperative Agreement:  The agreement between FWA and the participating Contractors regarding the 
establishment, implementation and management of these Guidelines. 

CVC: Cross Valley Canal 

EC: Salinity measured as electrical conductivity 

ELAP: Environmental Laboratory Accreditation Program 

Friant Contractors:  Friant Division contractors with long-term contracts with Reclamation. 

FWA:  Friant Water Authority, a California joint powers agency. 

Guidelines Surcharge:  The surcharge imposed by FWA on Contractors on a per acre feet basis for Non-
Millerton water introduced into the FKC to cover the costs of implementing the Guidelines. 

IOS: Intellisite Operation System 

Ledger:  The Water Quality Mitigation Ledger that tracks and accounts for all inflows into and diversions 
from the FKC in order to determine appropriate mitigation for impacted water quality attributable to the 
introduced Non-Millerton water. 

Maximum Contaminant Level (MCL): Usually reported in milligrams per liter (parts per million) or 
micrograms per liter (parts per billion). 

Non-Millerton water: All water introduced into the Friant-Kern Canal other than directly from Millerton 
Lake to the headworks of the FKC. 

OM&R: Operation, Maintenance and Replacement. 

Put:  The introduction of Non-Millerton water into the FKC. 

Project: The Friant Division of the Central Valley Project, specifically the Friant-Kern Canal. 

Reclamation: U.S. Department of the Interior, Bureau of Reclamation. 

SCCAO: Reclamation’s South-Central California Area Office. 

Take:  The delivery of Friant Division Class 1, Class 2, Recovered Water Account (RWA [Paragraph 
16b]), and Unreleased Restoration Flows supplies. 
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Taker:  A Friant Contractor receiving an eligible Take. 

Title 22: The Domestic Water Quality and Monitoring Regulations specified by the State of California 
Health and Safety Code (Sections 116270-116755), and California Code of Regulations (Sections 6440 et 
seq.), as amended. 

Tables 

Table 1. Water Quality Constituents 

Table 2. Check Structure Locations for Real-Time Measurements of Electrical Conductivity  

Table 3. Friant-Kern Canal In-Prism Water Quality Thresholds 

Table 4: Friant-Kern Canal Water Quality Constituents Short List. 

Attachments 

Attachment A: Water Quality Advisory Committee Charter 

Attachment B: Monitoring Program Summary 

Attachment C: Agronomic Impacts and Mitigation 

Attachment D: Ledger Standard Operating Procedures 

Attachment E: FKC Water Quality Guidelines Cost Allocation 
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The non-Project water discharged into Federal Facilities must comply with the California Drinking Water 
standards (Title 22)2 listed in Table 1. However, selenium thresholds cannot exceed 2 micrograms per 
liter as defined in Table 4.  

Table 1 Title 22 Water Quality Standards 

Constituent Units MCL 
Detection 
Limit for 

Reporting 

CAS 
Registry 
Number 

Recommended 
Analytical 

Method 
Primary 
Aluminum mg/L 1 (1) 0.05 (2) 7429-90-5 EPA 200.7 
Antimony mg/L 0.006 (1) 0.006 (2) 7440-36-0 EPA 200.8 
Arsenic mg/L 0.010 (1) 0.002 (2) 7440-38-2 EPA 200.8 

Asbestos MFL 7 (1) 
0.2 

MFL>10µm 
(2) 

1332-21-4 EPA 100.2 

Barium mg/L 1 (1) 0.1 (2) 7440-39-3 EPA 200.7 
Beryllium mg/L 0.004 (1) 0.001 (2) 7440-41-7 EPA 200.7 
Cadmium mg/L 0.005 (1) 0.001 (2) 7440-43-9 EPA 200.7 
Chromium, total mg/L 0.05 (1) 0.01 (2) 7440-47-3 EPA 200.7 
Copper mg/L 1.3 0.050 (2) 7440-50-8 EPA 200.7 
Cyanide mg/L 0.15 (1) 0.1 (2) 57-12-5 EPA 335.2 
Fluoride mg/L 2.0 (1) 0.1 (2) 16984-48-8 EPA 300.1 
Hexavalent Chromium mg/L 0.010 (1) 0.001 (2) 18540-29-9 EPA 218.7 
Lead mg/L 0.015 (9) 0.005 (2) 7439-92-1 EPA 200.8 
Mercury mg/L 0.002 (1) 0.001 (2) 7439-97-6 EPA 245.1 
Nickel mg/L 0.1 (1) 0.01 (2) 7440-02-0 EPA 200.7 
Nitrate (as nitrogen) mg/L 10 (1) 0.4 (2) 7727-37-9 EPA 300.1 
Nitrate + Nitrite (sum as 
nitrogen) mg/L 10 (1)  14797-55-8 EPA 353.2 

Nitrite (as nitrogen) mg/L 1 (1) 0.4 (2) 14797-65-0 EPA 300.1 
Perchlorate mg/L 0.006 (1) 0.004 (2) 14797-73-0 EPA 314/331/332 
Selenium mg/L 0.002 (10) 0.001 7782-49-2 EPA 200.8 
Thallium mg/L 0.002 (1) 0.001 (2) 7440-28-0 EPA 200.8 
Thiobencarb mg/L 0.07  28249-77-6 EPA 527 
Secondary 
Aluminum mg/L 0.2 (6)  7429-90-5 EPA 200.7 
Chloride mg/L 500 (7)  16887-00-6 EPA 300.1 
Color units 15 (6)   EPA 110 
Copper mg/L 1.0 (6) 0.050 (8) 7440-50-8 EPA 200.7 
Iron mg/L 0.3 (6)  7439-89-6 EPA 200.7 
Manganese mg/L 0.05 (6)  7439-96-5 EPA 200.7 
Methyl-tert-butyl ether 
(MTBE) mg/L 0.005 (6)  1634-04-4 EPA 502.2/524.2 

Odor -threshold units 3 (6)   SM 2150B 
Silver mg/L 0.1 (6)  7440-22-4 EPA 200.7 
Specific Conductance μS/cm 1,600 (7)   SM 2510 B 

 
2 California Code of Regulations, Title 22. The Domestic Water Quality and Monitoring Regulations specified by the 
State of California Health and Safety Code (Sections 4010 4037), and Administrative Code (Sections 64401 et seq.), as 
amended 
https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/lawbook/dw_regulations_2019_03
_28.pdf  

https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/lawbook/dw_regulations_2019_03_28.pdf
https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/lawbook/dw_regulations_2019_03_28.pdf
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Constituent Units MCL 
Detection 
Limit for 

Reporting 

CAS 
Registry 
Number 

Recommended 
Analytical 

Method 
Sulfate mg/L 500 (7)  14808-79-8 EPA 300.1 
Thiobencarb mg/L 0.001 (6)  28249-77-6 EPA 527 
Total Dissolved Solids mg/L 1,000 (7)   SM 2540 C 

Turbidity units 5 (6)   EPA 
190.1/SM2130B 

Zinc mg/L 5.0 (6)  7440-66-6 EPA 200.7 
Other Required Analyses 
Boron mg/L 2.0 (13)  7440-42-8 EPA 200.7 
Molybdenum mg/L 0.01 (11)  7439-98-7 EPA 200.7 
Sodium mg/L 200 (12)  7440-23-5 EPA 200.7 
Radioactivity 
Gross alpha* pCi/L 15 (3)   SM 7110C 
Organic Chemicals 
(a) Volatile Organic Chemicals (VOCs) 
Benzene mg/L 0.001 (4) 0.0005 (5) 71-43-2 EPA 502.2/524.2 
Carbon Tetrachloride mg/L 0.0005 (4) 0.0005 (5) 56-23-5 EPA 502.2/524.2 
1,2-Dichlorobenzene. mg/L 0.6 (4) 0.0005 (5) 95-50-1 EPA 502.2/524.2 
1,4-Dichlorobenzene. mg/L 0.005 (4) 0.0005 (5) 106-46-7 EPA 502.2/524.2 
1,1-Dichloroethane mg/L 0.005 (4) 0.0005 (5) 75-34-3 EPA 502.2/524.2 
1,2-Dichloroethane mg/L 0.0005 (4) 0.0005 (5) 107-06-2 EPA 502.2/524.2 
1,1-Dichloroethylene mg/L 0.006 (4) 0.0005 (5) 75-35-4 EPA 502.2/524.2 
cis-1,2-Dichloroethylene mg/L 0.006 (4) 0.0005 (5) 156-59-2 EPA 502.2/524.2 
trans-1,2-Dichloroethylene mg/L 0.01 (4) 0.0005 (5) 156-60-5 EPA 502.2/524.2 
Dichloromethane. mg/L 0.005 (4) 0.0005 (5) 75-09-2 EPA 502.2/524.2 
1,2-Dichloropropane. mg/L 0.005 (4) 0.0005 (5) 78-87-5 EPA 502.2/524.2 
1,3-Dichloropropene. mg/L 0.0005 (4) 0.0005 (5) 542-75-6 EPA 502.2/524.2 
Ethylbenzene. mg/L 0.3 (4) 0.0005 (5) 100-41-4 EPA 502.2/524.2 
Methyl-tert-butyl ether mg/L 0.013 (4) 0.003 (5) 1634-04-4 EPA 502.2/524.2 
Monochlorobenzene mg/L 0.07 (4) 0.0005 (5) 108-90-7 EPA 502.2/524.2 
Styrene. mg/L 0.1 (4) 0.0005 (5) 100-42-5 EPA 502.2/524.2 
1,1,2,2-Tetrachloroethane mg/L 0.001 (4) 0.0005 (5) 79-34-5 EPA 502.2/524.2 
Tetrachloroethylene (PCE) mg/L 0.005 (4) 0.0005 (5) 127-18-4 EPA 502.2/524.2 
Toluene mg/L 0.15 (4) 0.0005 (5) 108-88-3 EPA 502.2/524.2 
1,2,4-Trichlorobenzene mg/L 0.005 (4) 0.0005 (5) 120-82-1 EPA 502.2/524.2 
1,1,1-Trichloroethane mg/L 0.200 (4) 0.0005 (5) 71-55-6 EPA 502.2/524.2 
1,1,2-Trichloroethane mg/L 0.005 (4) 0.0005 (5) 79-00-5 EPA 502.2/524.2 
Trichloroethylene (TCE) mg/L 0.005 (4) 0.0005 (5) 79-01-6 EPA 502.2/524.2 
Trichlorofluoromethane mg/L 0.15 (4) 0.005 (5) 75-69-4 EPA 502.2/524.2 
1,1,2-Trichloro-1,2,2-
Trifluoroethane mg/L 1.2 (4) 0.01 (5) 76-13-1 SM 6200B 

Vinyl Chloride mg/L 0.0005 (4) 0.0005 (5) 75-01-4 EPA 502.2/524.2 
Xylenes mg/L 1.750* (4) 0.0005 (5) 1330-20-7 EPA 502.2/524.2 
(b) Non-Volatile Synthetic Organic Chemicals (SOCs) 
Alachlor mg/L 0.002 (4) 0.001 (5) 15972-60-8 EPA 505/507/508 
Atrazine mg/L 0.001 (4) 0.0005 (5) 1912-24-9 EPA 505/507/508 
Bentazon mg/L 0.018 (4) 0.002 (5) 25057-89-0 EPA 515.1 
Benzo(a)pyrene mg/L 0.0002 (4) 0.0001 (5) 50-32-8 EPA 525.2 
Carbofuran mg/L 0.018 (4) 0.005 (5) 1563-66-2 EPA 531.1 
Chlordane mg/L 0.0001 (4) 0.0001 (5) 57-74-9 EPA 505/508 
2,4-D mg/L 0.07 (4) 0.01 (5) 94-75-7 EPA 515.1 
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Constituent Units MCL 
Detection 
Limit for 

Reporting 

CAS 
Registry 
Number 

Recommended 
Analytical 

Method 
Dalapon mg/L 0.2 (4) 0.01 (5) 75-99-0 EPA 515.1 
Dibromochloropropane mg/L 0.0002 (4) 0.00001 (5) 96-12-8 EPA 502.2/504.1 
Di(2-ethylhexyl)adipate mg/L 0.4 (4) 0.005 (5) 103-23-1 EPA 506 
Di(2-ethylhexyl)phthalate mg/L 0.004 (4) 0.003 (5) 117-81-7 EPA 506 
Dinoseb mg/L 0.007 (4) 0.002 (5) 88-85-7 EPA 5151-4 
Diquat mg/L 0.02 (4) 0.004 (5) 85-00-7 EPA 549.2 
Endothall mg/L 0.1 (4) 0.045 (5) 145-73-3 EPA 548.1 
Endrin mg/L 0.002 (4) 0.0001 (5) 72-20-8 EPA 505/508 
Ethylene Dibromide mg/L 0.00005 (4) 0.00002 (5) 106-93-4 EPA 502.2/504.1 
Glyphosate (Roundup) mg/L 0.7 (4) 0.025 (5) 1071-83-6 EPA 547 
Heptachlor. mg/L 0.00001 (4) 0.00001 (5) 76-44-8 EPA 508 
Heptachlor Epoxide mg/L 0.00001 (4) 0.00001 (5) 1024-57-3 EPA 508 
Hexachlorobenzene mg/L 0.001 (4) 0.0005 (5) 118-74-1 EPA 505/508 
Hexachlorocyclopentadiene mg/L 0.05 (4) 0.001 (5) 77-47-4 EPA 505/508 
Lindane (gamma-BHC) mg/L 0.0002 (4) 0.0002 (5) 58-89-9 EPA 505/508 
Methoxychlor mg/L 0.03 (4) 0.01 (5) 72-43-5 EPA 505/508 
Molinate mg/L 0.02 (4) 0.002 (5) 2212-67-1 EPA 525.1 
Oxamyl mg/L 0.05 (4) 0.02 (5) 23135-22-0 EPA 531.1 
Pentachlorophenol mg/L 0.001 (4) 0.0002 (5) 87-86-5 EPA 515.1-3 
Picloram mg/L 0.5 (4) 0.001 (5) 1918-02-1 EPA 515.1-3 
Polychlorinated Biphenyls mg/L 0.0005 (4) 0.0005 (5) 1336-36-3 EPA 130.1 
Simazine mg/L 0.004 (4) 0.001 (5) 122-34-9 EPA 505 
Thiobencarb (Bolero) mg/L 0.07 (4) 0.001 (5) 28249-77-6 EPA 527 
Toxaphene mg/L 0.003 (4) 0.001 (5) 8001-35-2 EPA 505 
1,2,3-Trichloropropane mg/L 0.000005 (4) 0.000005 (5) 96-18-4 SRL 524M 
2,3,7,8-TCDD (Dioxin) mg/L 3 x 10-8 (4) 5 x 10-9 (5) 1746-01-6 EPA 130.3 
2,4,5-TP (Silvex) mg/L 0.05 (4) 0.001 (5) 93-72-1 EPA 515.1 
Other Organic Chemicals 
Chlorpyrifos µg/L 0.015 (11)  2921-88-2 EPA 8141A 
Diazinon µg/L 0.10 (11)  333-41-5 EPA 8141A 

Sources: 
• Recommended Analytical Methods: https://www.nemi.gov/home/ 
• Maximum Contaminant Levels (MCL): Title 22. The Domestic Water Quality and Monitoring Regulations specified by the State 
of California Health and Safety Code (Sections 4010-4037), and Administrative Code (Sections 64401 et seq.), as amended.  
(1) Title 22. Table 64431-A Maximum Contaminant Levels, Inorganic Chemicals 
(2) Title 22. Table 64432-A Detection Limits for Reporting (DLRs) for Regulated Inorganic Chemicals  
(3) Title 22. Table 64442 Radionuclide Maximum Contaminant Levels (MCLs) and Detection Levels for Purposes of Reporting 
(DLRs) 
(4) Title 22. Table 64444-A Maximum Contaminate Levels, Organic Chemicals 
(5) Title 22. Table 64445.1-A Detection Limits for Purposes of Reporting (DLRs) for Regulated Organic Chemicals 
(6) Title 22. Table 64449-A Secondary Maximum Contaminant Levels "Consumer Acceptance Contaminant Levels" 
(7) Title 22. Table 64449-B Secondary Maximum Contaminant Levels "Consumer Acceptance Contaminant Level Ranges" 
(8) Title 22. Table 64678-A DLRs for Lead and Copper 
(9) Title 22. Section 64678 (d) Lead Action level 
https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/lawbook/dw_regulations_2019_03_28.pdf  
• California Regional Water Quality Control Board, Central Valley Region, Fourth Edition of the Water Quality Control Plan for the 
Sacramento River and San Joaquin River Basins. Revised June 2015 
(10) Basin Plan, Table III-1 (ug/L) (selenium in Grasslands water supply channels) 
(11) Basin Plan, Table III-2A. 4-day average (chronic) concentrations of chlorpyrifos & diazinon in San Joaquin River from Mendota 
to Vernalis 
https://www.waterboards.ca.gov/centralvalley/water_issues/tmdl/central_valley_projects/delta_op_pesticide/  
• Ayers, R. S. and D. W. Westcot, Water Quality for Agriculture, Food and Agriculture Organization of the United Nations - 
Irrigation and Drainage Paper No. 29, Rev. 1, Rome (1985). 
(12) Ayers, Table 1 (mg/L) (sodium) 
(13) Ayers, Table 1 (mg/L) (boron) 
http://www.fao.org/3/T0234E/T0234E00.htm  
• (14) Requested by State Water contractors, no MCL specified. 
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• California Regional Water Quality Control Board. PFAS Per-and Polyfluoroalkyl Substances. 
(15) Testing Methods in California Drinking Water 
https://www.waterboards.ca.gov/pfas/ 
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Table 2. Check Structure Locations for Real-Time Measurements of Electrical Conductivity 

Check Structure Milepost 
Little Dry Creek 5.50 

Kings River 28.52 
Sand Creek 46.04 
Dodge Ave 61.03 

Kaweah River 71.29 
Rocky Hill 79.25 
Fifth Ave 88.22 

Tule River 95.67 
Deer Creek 102.69 
White River 112.90 

Reservoir (Woollomes) 121.51 
Poso Creek 130.03 

Shafter 137.20 
Kern River 151.81 
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Table 3. Friant-Kern Canal In-Prism Water Quality Thresholds 

Period 
Salinity 

expressed 
as EC 

(μS/cm) 

Chloride 
(mg/L) 

Boron 
(mg/L)1 

Turbidity 
(NTU)6 

Total 
Suspended 

Solids 
(ppm)6 

SAR7 Sodium 
(mg/L)7 

Period 1 
March 1 – June 30 1,0002 1023 0.4 40 20 3 69 

Period 2 
July 1 – August 31 5004 554 0.4 40 20 3 69 

Period 3a 
September 1 – 

February 28 
1,0002 1023 0.4 40 20 3 69 

Period 3b 
September 1 – 

February 28 
1,0002 1235 0.4 40 20 3 69 

 Notes: 
Thresholds adapted from Grieve, C.M., S.R. Grattan and E.V. Maas. 2012. Plant salt tolerance. In. (W.W. Wallender and K.K. Tanji, 
eds). Agricultural Salinity Assessment and Management (2nd edition). ASCE pp 405-459; and Ayers, R.S. and D.W. Westcot 1985. 
Water quality for agriculture. FAO Irrigation and Drainage Paper 29 (rev 1). Food and Agriculture Organization of the United Nations. 
Rome 
For addition detail, see Attachment C – Agronomic Impacts and Mitigation. 
When Friant-Kern Canal in-prism water quality conditions in this table are exceeded, Friant Division Long-Term Contractors will work 
together to seek 1:1, unleveraged, and cost-neutral exchanges for pump-in and pump-back programs. This does not apply to spot-
market or third-party exchanges.  
1 Grapes are used as a representative crop for boron sensitivity and are prevalent in the Friant Division. They are used as a surrogate 
for many other sensitive crop types such as apricots, figs, and grapefruits. Threshold assumes conventional irrigation with minimum 20 
percent leaching fraction applied. 
2 Threshold assumes minimum of 20 percent leaching requirement applied and adjusted to account for regulated deficit irrigation during 
almond hull split period (July 1 – August 31) to not exceed maximum ECet. Almonds on Nemaguard rootstock are used as a 
representative crop for salinity sensitivity and are prevalent in the Friant Division. They are used as a surrogate for many other 
sensitive crop types such as apples, cherries, pears, pistachios, and walnuts.  
3 Threshold assumes minimum of 20 percent leaching requirement applied and then adjusted to account for regulated deficit irrigation 
during almond hull split period (July 1 – August 31) to not exceed maximum Cl-et. Almonds on Nemaguard rootstock used as a 
representative crop for chloride sensitivity. They are used as a surrogate for other sensitive crops including cherries, pistachios, and 
walnuts. If the measured average chloride concentration for Period 1 exceeds 70 mg/L, the chloride threshold remains at 102 mg/L. 
4 Threshold applies to almond hull split period when regulated deficit irrigation is applied to avoid hull rot. This threshold is used 
assuming irrigation applications are reduced to 50 percent of the tree water requirement and subsequently thresholds applied for the 
remainder of the year have been adjusted to account for additional salt accumulation. This threshold was developed with consideration 
of existing program operations, historical water quality data, and absolute water quality thresholds.  
5 If the measured average chloride concentration in Period 1 (March 1 – June 30) is less than or equal to 70 mg/L, the allowable 
chloride threshold for Period 3 (September 1 – February 28) is increased to 123 mg/L. 
6 Applied TSS and turbidity thresholds from section 3 of the Final Initial Study/Negative Declaration for: Warren Act Contract and License, 
and Operation and Maintenance Agreement to Introduce Floodwaters from Reclamation District 770 into the Friant-Kern Canal, March 2017. 
Additional detail provided in Attachment C – Agronomic Impacts and Mitigation 
7 SAR and Sodium are managed together. If the measured SAR value exceeds 3 AND the measured sodium concentration exceeds a 
threshold of 69 mg/L, management will be necessary. SAR is derived from Ayers Table 1 and assumes surface irrigation. The sodium 
threshold is also derived from Ayers Table 1 and suggests that irrigation waters <3 meq/L (69 mg/L) is suitable for crops that are 
sprinkler irrigated.  

Key: 
µS/cm = microsiemens per centimeter (1 µS/cm = 1 µmhos/cm = 1/1,000 dS/m) 
ASCE = American Society of Civil Engineers 
Cl-et = maximum chloride threshold of the saturated soil paste 
EC = electrical conductivity of applied water 
ECet = Soil salinity threshold for a given crop 
FAO = Food and Agriculture Organization of the United Nations 
Friant Division = Friant Division of the Central Valley Project 
mg/L = milligrams per liter 
SAR = sodium adsorption ratio 
TDS = total dissolved solids 
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Table 4: Friant-Kern Canal Water Quality Constituents Short List 

Constituent Units Thresholds 

1,2,3 TCP (µg/L) 0.005 

Arsenic (mg/L) 0.010 

Bicarbonate (mg/L) -- 

Boron (mg/L) See Table 3 

Bromide (mg/L) -- 

Calcium (mg/L) -- 

Chloride (mg/L) See Table 3 

Chromium, 
total (mg/L) 0.05 

Hexavalent 
chromium (mg/L) 0.010 

Iron (µg/L) 300 

Magnesium (mg/L) -- 

Manganese (µg/L) 50 

Nitrate (mg/L) 10 

pH  -- 

SAR  See Table 3 

Salinity (as 
EC) (µS/cm) See Table 3 

Selenium (µg/L) 2 

Sodium (mg/L) See Table 3 

Sulfate (mg/L) 500 

TDS (mg/L) -- * 

Total Organic 
Carbon (mg/L) -- 

TSS (ppm) See Table 3 

Turbidity (NTU) See Table 3 

Gross alpha pCi/L 15 
Notes: 
Thresholds are Title 22 MCLs unless otherwise noted. 
Constituent with threshold denoted as “--“ do not have an established MCL. 
Refer to Table 1 and Notes for Table 1 for additional details.  
*TDS MCL not listed for the purposes of these Guidelines. TDS and EC are both a measure of salinity and the EC thresholds shown 
in Table 3 are controlling. 
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Attachment A. Water Quality Advisory 

Committee Charter 
 

Background and Objective 
The Guidelines for Accepting Water into the Friant-Kern Canal (“Guidelines”) were adopted by the Friant 

Water Authority (FWA) based on the voluntary consensus of and written agreement with a significant majority 

of the contractors of the Friant Division of the Central Valley Project (“Friant Division”). The Guidelines 

address concerns regarding the implementation of programs and projects that could introduce water of a lesser 

quality to the Friant-Kern Canal (“FKC”), when compared to water quality of historic deliveries from 

Millerton Lake. The Guidelines include water quality constituent thresholds based on agronomic principles and 

a ledger mechanism to determine the required mitigation for introducing water of lesser quality into the FKC.  

The Guidelines provide that FWA will appoint a Water Quality Advisory Committee (“Committee”) composed 

of Friant Division long-term contractors (“Friant Contractors”) involved in either introducing water to or 

receiving water from the FKC. The Committee will provide recommendations to FWA and Reclamation on 

operations and water quality monitoring requirements of the FKC as well as potential revisions to the 

Guidelines. This document describes Committee membership and Committee roles and responsibilities. 

Water Quality Advisory Committee Membership 
The appointed Committee will be composed of Friant Contractors who may either be introducing water to or 

receiving water from the FKC. Committee membership is described in Table 1. New members in replacement 

of an existing member or as a new addition to the membership list requires majority approval following notice 

to and the consent of the FWA Board of Directors.  

Table 1. Water Quality Advisory Committee Membership 

Members 

Arvin-Edison Water Storage District 

Delano-Earlimart Irrigation District 

Kern-Tulare Water District 
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Lindsay Strathmore Irrigation District 

Lower Tule River Irrigation District 

Pixley Irrigation District 

Porterville Irrigation District 

Saucelito Irrigation District 

Shafter Wasco Irrigation District 

South San Joaquin Municipal Utility District 

Terra Bella Irrigation District 

 

Roles and Responsibilities 
The Committee will convene on an annual basis prior to the irrigation season or planned reverse flow 

operations. The Committee will: 

• Evaluate current year operations related to Guidelines implementation including but not limited to 

Ledger operation modifications, potential schedule changes, and potential changes to mitigation 

deliveries. 

• Review and approve annual monitoring. 

• Make recommendations regarding the costs and budgets associated with administering and 

implementing the Guidelines.  

The Committee may also convene on an as needed basis under the following conditions: 

• When Friant Division Class 1 contract allocation is less than or equal to 25 percent. 

• If a future regulatory cost or equivalent fee is imposed on Friant Contractors and a portion of such 

fee can reasonably be attributed to the incremental difference of water quality conditions in the 

FKC.  

• If there is a significant, scientifically based justification and three out of the following five water 

contractors agree that a change to Guideline principles and/or criteria should be discussed: Arvin-

Edison Water Storage District, Shafter Wasco Irrigation District, Delano-Earlimart Irrigation 

District, South San Joaquin Municipal Utility District, or Kern-Tulare Water District. 
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• If FKC water quality continuously exceeds one or more constituent thresholds and pump-in 

operations must cease. 

The Committee will make recommendations to the FWA Board via consensus decision making. If 100% 

consensus cannot be reached, a recommendation will be made, and minority viewpoints will also be 

communicated. The Committee with provide all recommendations to the FWA Board. Single-year 

modifications to Guidelines implementation, monitoring, and/or pump-in operations will be noticed to all 

Friant Contractors. Recommendations requiring substantial modifications or updates to the Guidelines 

will be provided to the FWA Board and the FWA will coordinate with Reclamation to implement 

recommended changes.  

Monitoring Subcommittee 

The Committee will appoint at least three and no more than five representatives of its members to serve on a 

Monitoring Subcommittee that will coordinate with FWA on the implementation of the Guidelines particularly 

with respect to potential or actual exceedance of the water quality thresholds established under these 

Guidelines and the implementation of required mitigation, including the reduction of discharges of Non-

Millerton water into the FKC.  The Subcommittee will make recommendations to FWA in accordance with 

Section B.2.d above, but the final operational decisions will be made by FWA. 
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Attachment B. Monitoring Program 

Summary 
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Summary of requirements for monitoring campaign specified in the Guidelines for Accepting Water into the Friant-Kern Canal 

Notes: References to tables above (Table 1, 2, 4) from Friant Water Authority draft Guidelines for Accepting Water into the Friant-Kern Canal. 

          **Threshold buffers that will trigger continued monitoring are 80% of the thresholds established in Table 4. 

Key: 

EC = electrical conductivity 

CVC = Cross Valley Canal 

ELAP = Environmental Laboratory Accreditation Program 

FKC = Friant-Kern Canal 

IOS = Intellisite Operation System 

Reclamation = U.S. Department of the Interior, Bureau of Reclamation 

Sample Source/Type 
Trigger 

Constituents/Bacterial 
Organisms Frequency Location Communication 

Source of Discharge Water 

1 Non-Millerton Lake 
Source Routine sampling. All in Table 1 Every three years Discharge Location.  

Reported to FWA and Reclamation FKC's 
Contracting Office for review. FWA will 
report to Friant contractors. 

2 Non-Millerton Lake 
Source Routine sampling. All in Table 4 Annually Discharge Location.  

3 Non-Millerton Lake 
Source 

If routine sampling of Table 4 water quality 
constituents shows exceedance of an established 
threshold buffer. **  

Any in Table 4 exceeding the 
established threshold buffer. 

Weekly for targeted constituents 
of concern, until four consecutive 
tests show consistent water 
quality results. 

Discharge Location.  

4 Non-Millerton Lake 
Source 

Reclamation on a case-by-case basis per condition 
of program operations. Any Any Any 

Blended Canal Water 

5 FKC Water Routine sampling (continuous). EC Real-time, Every 15 minutes Check structures and mile posts in 
Table 2 

Uploaded to FWA's IOS. FWA will regularly 
calibrate equipment. 

6 FKC Water If Friant Water Quality Model forecasts exceedance 
of an established threshold buffer. ** 

Any in Table 4 exceeding the 
established threshold buffer. 

Weekly. Until sampled data, 
supported through modeling, 
show four consecutive tests below 
the established threshold buffer. 

Check structures and mile posts in 
Table 2, where water quality changes are 
expected. 

FWA will deliver to ELAP certified lab. 
Forecasted and measured in-prism water 
quality will be communicated by FWA to 
Friant contractors. 

7 FKC Water Specific operation disruptions (servicing of real-
time equipment, unexpected outages, etc.). EC Any Any  

8 CVC Reverse-flow, and pump-back operations. All in Table 4 Weekly CVC, near Intertie 
FWA will deliver to ELAP certified lab. 
Water quality data will be communicated via 
FWA's IOS.  

9 CVC 
Initiation of pump-back operations, and/or 
anticipated that CVC operations will significantly 
change water quality 

All in Table 1 and Table 4 As needed CVC, near Intertie 
FWA will deliver to ELAP certified lab. 
Water quality data will be communicated via 
FWA's IOS.  
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ACRONYMS AND ABBREVIATIONS 
µmhos/cm micromhos per centimeter (1 µmhos/cm = 1 µS/cm = 1/1,000 dS/m) 

µS/cm microsiemens per centimeter (1 µS/cm = 1 µmhos/cm = 1/1,000 dS/m) 

Ad hoc Committee Ad hoc Water Quality Committee 

AEWSD Arvin-Edison Water Storage District 

ATP adenosine triphosphate  

AW applied water 

B boron 

Be boron concentration of the saturated soil paste (rootzone boron) 

Bet maximum boron threshold of the saturated soil paste 

Bw boron concentration of applied irrigation water 

Bsw boron threshold for soil water concentration 

Ca calcium 

Ca2+ calcium ion 

CaCO3 calcite or calcium carbonate 

cfs cubic feet per second 

Check 21 Check Structure 21 at milepost 172,40 on the California Aqueduct  

Cl- chloride ion 

Cl-e chloride concentration of the saturated soil paste (rootzone chloride) 

Cl-et maximum chloride threshold of the saturated soil paste 

Cl-w chloride concentration of applied irrigation water 

CO2 carbon dioxide 

CO32- carbonate ion 

CVC Cross Valley Canal 

DEID Delano-Earlimart Irrigation District 

dS/m  deciSiemens per meter (1 dS/m = 1,000 µmhos/cm = 1,000 µS/cm) 

EC electrical conductivity 

ECe electrical conductivity of the saturated soil paste (rootzone salinity) 

ECdw  electrical conductivity/salinity of irrigation drainage water 

ECw  electrical conductivity/salinity of applied irrigation water 

ET evapotranspiration 

Fc  concentration factor 

FKC  Friant-Kern Canal 

Friant Division Friant Division of the Central Valley Project 

FWA Friant Water Authority 
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HCO3- bicarbonate  

Intermediate Water quality representing the average of California Aqueduct Check 21 and Cross Valley Canal 
water qualities 

KTWD Kern Tulare Water District 

LF leaching fraction 

LR leaching requirement 

Mg2+ magnesium ion 

Mg magnesium 

meq/L milliequivalents per liter 

mg/L milligrams per liter (equivalent to ppm) 

Na+ sodium ion 

Na sodium 

pH Measure of acidity or alkalinity 

Policy Friant-Kern Canal Water Quality Policy 

ppm parts per million (equivalent to mg/L) 

RDI regulated deficit irrigation 

SAR sodium adsorption ratio 

SARadj adjusted sodium adsorption ratio 

SID Saucelito Irrigation District 

SSJMUD South San Joaquin Municipal Utility District 

SWID Shafter-Wasco Irrigation District 

TDS total dissolved solids 
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BACKGROUND 
The Guidelines for Accepting Water into the Friant-Kern Canal (Guidelines) were developed in response to 
concerns regarding the implementation of programs and projects that could introduce water of a lesser 
quality to the Friant-Kern Canal (FKC), when compared to water quality of historic deliveries from Millerton 
Lake. The Guidelines define requirements for discharging water into the FKC, water quality monitoring and 
reporting requirements, mitigation requirements, and forecasting and communication protocols. The 
Guidelines propose a ledger mechanism to determine the required mitigation for introducing water of lesser 
quality into the FKC. This attachment to the Guidelines provides additional information on agronomic effects, 
mitigation requirements, and approach for defining maximum water quality thresholds for key constituents. 
The thresholds are specific to irrigation periods that correspond to the growing season and agricultural 
management practices during the year.  

AGRONOMIC EFFECTS 
When assessing the suitability of water for irrigation, three main hazards or “agronomic thresholds” are 
considered (Ayers and Westcot, 1985): (1) the salinity hazard (electrical conductivity of the applied irrigation 
water [ECw]), (2) the hazard posed by specific ions (chloride [Cl-], boron [B], and sodium [Na+]), and (3) the 
infiltration hazard (sodium adsorption ratio [SAR] and ECw). There are other parameters, such as acidity (pH) 
or alkalinity, sediments and nutrients that can affect calcite (CaCO3) deposits, emitter clogging, crop 
development, and corrosion, but these do not fall under “agronomic thresholds.” 

The primary source of imported water is proposed to come from the Friant-Kern Canal/Cross Valley Canal 
Intertie (Intertie) and conveyed via reverse-flow, pump-back operations. Water being introduced at the Intertie 
might include previously banked groundwater of Kern Fan water quality, Cross Valley Contract supplies, 
recaptured and recirculated San Joaquin River Restoration Program Restoration Flows, and other colors. 
Water quality conditions from the Cross Valley Canal (CVC)could range from existing conditions in the Cross 
Valley Canal (CVC) to that from the California Aqueduct, depending on respective canal operations. For the 
analysis presented herein, both CVC and California Aqueduct (measured at Check 21) water qualities were 
used, as well as a weighted average of those two sources (Intermediate) applied to show the range of 
potential imported water qualities. Source water quality concentrations are shown in Table 1 and Table 2. 

Table 1. Average Concentrations of Various Irrigation Water Quality Constituents 

LOCATION 
WATER QUALITY CONSTITUENTS 

TDS (/L) ECw (μS/cm) Boron (B) (mg/L) 
Chloride (Cl-) 

(mg/L) 
FKC1, 2 24 40 0.04 1.9 
CVC1, 3 180 340 0.11 45.0 

Intermediate4 232 420 0.16 63.2 
Check 215 283 500 0.216 81.3 

Note: 
1 Water quality data from AEWSD grab samples lab data from 2010 – 2019. Averages exclude months when mixing 
occurred. 
2 Sample taken at terminus of FKC. 
3 Sample taken at AEWSD CVC, Pumping Plant 6 or 6B Forebay. 
4 Weighted average of CVC and Check 21 water quality. 
5 California Aqueduct measured at Check 21 from 2009-2017. 
6 Check 21 Boron measurements only available for years 1967 – 1976.  
Key: 
AEWSD = Arvin Edison Water Storage District 
Check 21 = Check Structure 21 at milepost 172,40 on the California Aqueduct 
CVC = Cross Valley Canal 
µS/cm = microsiemens per centimeter (1 µS/cm = 1 µmhos/cm = 1/1,000 dS/m) 
ECw = electrical conductivity of applied water 
FKC = Friant-Kern Canal 
Intermediate = Water quality representing the average of California Aqueduct Check 21 and Cross Valley Canal 
water qualities 
mg/L = milligrams per liter 
TDS = total dissolved solids 
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Table 2. Average Monthly Electrical Conductivity, Chloride, and Boron Concentrations by Source and 
Year Type 

MONTH 
CVC1 CHECK 212 

Wet3 Average4 Dry5 Wet6 Average4 Critical7 

Average Monthly Electrical Conductivity Concentrations by Source and Year Type (μS/cm) 
January 431 369 287 309 523 598 
February 570 433 378 269 551 680 

March 261 273 275 248 545 671 
April 240 270 277 255 500 616 
May -- 306 306 195 479 575 
June 385 384 383 174 471 597 
July 257 292 307 206 385 542 

August 286 308 335 249 425 643 
September 323 326 329 247 524 689 

October 429 360 315 539 573 628 
November 396 356 330 480 529 614 
December 368 349 337 532 554 624 

Average Monthly Chloride Concentrations by Source and Year Type (mg/L) 
January 74.5 54.4 27.7 34.0 84.5 99.0 
February 104.0 63.0 46.6 31.5 87.4 104.3 

March 21.0 21.8 22.0 27.5 82.9 104.3 
April 19.0 21.4 22.0 33.5 72.1 100.0 
May -- 31.4 31.4 25.0 73.0 88.7 
June 48.5 46.1 45.2 19.0 73.4 98.3 
July 28.5 33.7 35.8 25.5 55.8 84.0 

August 39.6 40.7 42.0 31.0 70.3 109.0 
September 53.0 48.4 43.8 22.0 92.6 116.7 

October 76.0 55.0 41.0 105.5 101.6 106.7 
November 68.5 54.8 45.7 90.5 86.8 95.7 
December 55.5 46.7 40.8 101.0 95.5 103.0 

Average Monthly Boron Concentrations by Source and Year Type (mg/L)8 

January 0.12 0.11 0.10 0.23 0.20 0.20 
February 0.16 0.15 0.14 0.30 0.26 0.25 

March 0.10 0.11 0.11 0.33 0.31 0.30 
April 0.11 0.12 0.12 0.30 0.29 0.10 
May -- 0.12 0.12 0.27 0.25 0.20 
June 0.16 0.15 0.14 0.20 0.18 0.20 
July 0.11 0.11 0.12 0.13 0.16 0.20 

August 0.09 0.10 0.12 0.10 0.19 0.20 
September 0.08 0.09 0.11 0.10 0.16 0.10 

October 0.11 0.10 0.09 0.25 0.19 0.15 
November 0.11 0.11 0.11 0.20 0.18 0.15 
December 0.11 0.11 0.12 0.20 0.19 0.15 

Note: 
1 Water quality data from AEWSD grab samples lab data from 2010 – 2019. 
2 California Aqueduct measured at Check 21 from 2009-2017. 
3 CVC wet year averages represent the monthly average for San Joaquin Index year types below normal, 
above normal, and wet and excludes months where there is mixing. 
4 Average concentrations shown represent the average of all year types and excludes months where there 
is mixing.  
5 CVC dry year averages represent the monthly average for San Joaquin Index year types dry and critical 
and excludes months where there is mixing.  
6 Check 21 wet year averages represent the monthly average for San Joaquin Index wet year types only. 
7 Check 21 critical year averages represent the monthly average for San Joaquin Index critical years only. 
8 Check 21 Boron measurements represent years 1967 – 1976 per available data.  
Key: 
-- = no available data. CVC water quality in wet years during May were only mixed water quality. 
AEWSD = Arvin-Edison Water Storage District 
Check 21 = Check Structure 21 at milepost 172,40 on the California Aqueduct 
CVC = Cross Valley Canal 
μS/cm = microsiemens per centimeter (1 µS/cm = 1 µmhos/cm = 1/1,000 dS/m) 
mg/L = milligrams per liter 
 



December 2022 | Attachment C – Agronomic Impacts and Mitigation 3 

SALINITY EFFECTS ON CROPS 
The effects of salinity on crops are due to two separate properties in the saline media that can impact the 
crop individually but more often collectively (Läuchli and Grattan, 2012): (1) Salinity increases the electrical 
conductivity (EC) of the soil solution which reduces its the osmotic potential and (2) specific ions (I.e. Cl-, 
Na+ and B) in the soil solution can potentially be toxic to certain crops. 

Osmotic effects occur when the concentration of salt in the soil solution is too high to allow for normal for 
crop growth. Dissolved salts reduce the osmotic potential of the soil solution. Plants must adjust osmotically 
through either the absorption of ions from the soil solution, or the synthesis and/or accumulation of organic 
solutes in the root cells. The synthesis of compatible organic solutes allows a plant to adjust osmotically and 
survive, but at the expense of plant growth (Munns and Tester, 2008). The synthesis of organic solutes 
requires a considerable amount of metabolic energy (i.e., adenosine triphosphate (ATP)) that is used for cell 
maintenance and osmotic adjustment that could otherwise be used for growth. As a result, salt-stressed 
plants are stunted, even though they may appear healthy in all other regards. Both processes of adjustment 
(accumulation of ions and synthesis of organic solutes) occur but the extent by which one process dominates 
depends on the type of crop and level of salinity (Läuchli and Grattan, 2012). And in a cell, 
compartmentalization is critical to keep toxic ions away from sensitive metabolic processes in the cytoplasm 
(Hasegawa et al., 2000). Such compartmentation is controlled by transport processes in the plasma 
membrane and tonoplast (i.e., vacuolar membrane). The efficiency of ion transport processes, as well as 
metabolic costs for organic-solute synthesis, differ from crop to crop and even within a species giving rise to 
different salinity tolerances. 

TOXIC ION EFFECTS 
Specific ions (i.e., Na+, Cl-, and B) in the soil solution can cause direct injury to crops, causing further crop 
damage from what occurs from osmotic effects. Typically, toxic ion effects are commonly found in woody 
perennials, such as tree and vine crops, while most annual row crops remain injury free unless salinity stress 
is severe. Woody perennial crops have little ability to exclude sodium or chloride from their leaves, and the 
plants are long-lived; hence, they often suffer toxicities at even moderate soil salinities. Typically, toxic ion 
effects become more critical to sensitive tree and vine crops over the years. 

Chloride 
Chloride and sodium toxicity can damage a plant/tree physically, biochemically and physiologically. As 
sodium and chloride move in the transpiration stream, they are deposited in the leaves. Older leaves have 
more water transpire from them and consequently have higher concentrations of sodium and chloride. Once 
accumulated in a leaf, sodium and chloride typically do not remobilize to other tissues. As the concentration 
in that leaf increases, the salts can physically desiccate cells causing injury in the form of leaf burn. Necrotic 
leaves no longer photosynthesize and produce carbohydrates for the tree, which in turn, will impact growth 
and production. But even before salts accumulate in leaves to levels that cause physical injury, those salts 
can reduce the chlorophyll content in leaves (Dejampour et al., 2012) and interfere with enzymatic activities 
affecting key metabolic pathways in both respiration and photosynthesis (Munns and Tester, 2008).  

Boron 
Although not a main “salinizing” constituent in applied irrigation water, boron can also cause injury to the 
crop. Boron is an essential micronutrient for plants, but the concentration range of plant-available boron in 
the soil solution optimal for growth for most crops is very narrow. Above this narrow range, toxicity occurs 
(Grieve et al., 2012). Boron toxicity, including how and where it is expressed in the plant, is related to the 
mobility of boron in the plant. Boron is thought to be immobile in most species where it accumulates in the 
margins and tips of the oldest leaves where injury occurs. However, boron can be re-mobilized by some 
species due to high concentrations of sugar alcohols (polyols) where they bind with boron and carry it to 
younger tissues (Brown and Shelp, 1997). These boron-mobile plants include almond, apple, grape, and 
most stone fruits. For these crops, boron concentrations are higher in younger tissue than in older tissue, and 
injury is expressed in young, developing tissues in the form of twig die back, gum exudation, and reduced 
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bud formation. Boron-immobile plants such as pistachio, tomato, and walnut do not have high concentrations 
of polyols, and the boron concentrates in the margins of older leaf tissues. Injury in these crops is expressed 
as the classical necrosis on leaf tips and margins. 

Sodium 
Sodium can be problematic to a crop in several ways. It can be directly toxic to the plant, it can interfere with 
the nutritional status of the plant (e.g., Na+-induced calcium [Ca2+] deficiency), or it can indirectly affect the 
crop due to its adverse effect on soil structure. Some trees are very sensitive and can develop Na+ toxicity 
when concentrations of Na+ are as low of 5 milliequivalents per liter (meq/L) (115 mg/L) in the soil water. 
However, this observation was made before scientists realized the importance of adequate Ca2+ in the soil 
water for root membrane stability to maintain their selectivity for ion uptake. With adequate Ca2+, such as 
that provided by gypsum applications, sodium toxicity may never be observed in these sensitive trees at such 
low sodium concentrations. Therefore, rather than having a threshold for Na+ per se, the sodium-calcium 
ratio in the soil solution is a better indicator of Na+ toxicity. The SAR of the applied irrigation water has been 
used as a surrogate for the sodium-calcium ratio, and the general rule is an SAR < 3 is not problematic.  

𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑁𝑁𝑁𝑁+

�(𝐶𝐶𝑁𝑁2+ + 𝑀𝑀𝑀𝑀2+)
2

 

Where Na+, Ca2+, and magnesium ion (Mg2+) concentrations are expressed in meq/L. 

This is different when assessing sodium’s indirect effect on soil structural stability (see the Infiltration Hazard 
section that follows). Table 3 shows critical SAR of the applied irrigation water above which can cause injury 
or nutritional distress in sensitive crops. Table 4 shows the seasonal average SAR for various water sources.  

Table 3. Critical SAR of Applied Irrigation Water 

CROP1 CRITICAL SAR OF APPLIED IRRIGATION WATER 

All Crops < 3 

Note: 
1 Many tree crops are sensitive to Na+ toxicity after several years when sapwood converts to 

heartwood releasing Na+ from the root to the shoot. Most annual crops are insensitive to 
Na+ per se provided there is sufficient Ca2+ in the soil solution to maintain membrane 
integrity and ion selectivity. Hence, the ratio of sodium to calcium is more critical (Grattan 
and Grieve, 1992). 

Key 
Ca2+ = calcium ions 
Na+ = sodium ions 
SAR = sodium adsorption ratio 
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Table 4. Seasonal Average SAR for Various Water Sources 

VALUE1 FKC2, 3 CVC2, 4 INTERMEDIATE5 CHECK 216 

Average 0.46 1.68 1.99 2.27 

Maximum 0.87 2.04 2.46 2.96 

Minimum 0.28 1.10 1.61 1.79 

Note: 
1 March through October period. 
2 Water quality data from AEWSD grab samples lab data from 2011 – 2017. 
3 Sample taken at terminus of FKC. 
4 Sample taken at AEWSD CVC, Pumping Plant 6 or 6B Forebay. 
5 Weighted average of CVC and Check 21 water quality. 
6 California Aqueduct measured at Check 21 from 1968-2017. 
Key 
AEWSD = Arvin Edison Water Storage District 
Check 21 = Check Structure 21 at milepost 172,40 on the California Aqueduct 
CVC = Cross Valley Canal 
FKC = Friant-Kern Canal 
Intermediate = Water quality representing the average of California Aqueduct Check 21 and Cross 
Valley Canal water qualities 
SAR = sodium adsorption ratio 
 

INFILTRATION HAZARD 
Sodium Adsorption Ratio 
The SAR has been the standard used for assessing the infiltration hazard of applied irrigation water (Ayers 
and Westcot, 1985). But the actual infiltration hazard is assessed by balancing the opposite effects of salinity 
(ECw) and sodicity (i.e., SAR) on aggregate stability. High salinity and low SAR are both important in 
maintaining adequate soil structure, which promotes better infiltration. Even though coarse-textured soils 
infiltrate faster than fine-textured soils, the hazard exists for all soil types. Typically, the adjusted SAR 
(SARadj) is used rather than the SAR as it more accurately accounts for CaCO3, precipitation, and dissolution 
processes in the soil solution near the soil surface that control the free Ca2+ concentration. Figure 1 shows 
the relationship between the ECw of the applied irrigation water and the SARadj as it relates to zones of “likely 
reductions” in infiltration rates (red), “slight to moderate reductions” in infiltration rates (yellow) and “no 
reductions” in infiltration rates (blue), adapted from Hanson et al., 2006. The threshold value is, therefore, 
variable and is considered to be the line that separates the “blue” and “yellow” zones on Figure 1. It is very 
important to note that low ECw concentration (i.e., ECw < 200 µS/cm) causes a reduction in water infiltration 
regardless of the SAR. Figure 1 also compares this relationship with various water sources. Note that FKC 
water falls in the red ”severe reduction in infiltration” zone because of its low ECw concentration, while water 
from the CVC or mixed with CVC water falls in the yellow ”slight to moderate reduction in infiltration” zone. 
The addition of gypsum to FKC water increases the ECw concentration, moving the point to the right and away 
from the ”severe reduction in infiltration” zone while slightly reducing the SAR. 
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Key: 
µS/cm = microsiemens per centimeter 
Check 21 = California Aqueduct Check 21 
CVC = Cross Valley Canal 
FKC = Friant-Kern Canal 
Intermediate = Water quality representing the average of California Aqueduct Check 21 and Cross Valley Canal water qualities 

Figure 1. Comparison of Various Water Source Relationship between the Salinity of Applied Irrigation Water and the Adjusted Sodium Adsorption 
Ratio 

Calcium-Magnesium Ratio 
Calcium nutrition can be problematic under several conditions. Calcium deficiency can occur under low-saline 
conditions when the concentration of free calcium [Ca2+] is < 1-2 millimoles/L in the soil solution. Deficiency 
can also occur under high sodic conditions where the SAR exceeds 10-15 in sensitive plants due to high 
sodium-calcium ratios or in alkaline conditions where Ca2+ precipitates out of the soil solution as it forms 
CaCO3. Due to competition in the plant between calcium and magnesium at the root membrane, calcium 
nutrition could potentially be compromised when the calcium-magnesium ratio is generally less than 1 
(Rhoades, 1992). Table 5 shows the seasonal average calcium-magnesium ratio for various water sources. 
Note the ratios for both FKC and CVC water are considerably higher than 1, while the ratio at California 
Aqueduct Check 21 is very close to 1 but will likely increase in the soil solution as the infiltrating water 
dissolves existing gypsum in the soil from previous amendment use. Therefore, calcium deficiencies, using 
CVC or Check 21 water or any mixture of the two, are unlikely.  
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Table 5. Seasonal Average Calcium-Magnesium Ratio for Various Water Sources 

PH AND 

BICARBONATE EFFECTS 
The pH of both the applied irrigation water and the soil solution are important factors that may affect either 
the suitability of water for irrigation or its effect on nutrient availability to the crop. And many of the adverse 
effects of pH are associated with combined high alkalinity (high concentrations of bicarbonate [HCO3

-] and 
carbonate [CO3

-2]). In slightly alkaline waters (pH 7- 8.3),  the alkalinity is from bicarbonate. Only when the 
pH exceeds 8.3 does carbonate become present. The pH of the water is an indication of the activity of the 
hydrogen ion. The numerical pH value is expressed on a negative log scale such that a one-unit increase or 
decrease corresponds to a ten-fold increase or decrease in the hydrogen ion activity. Therefore, a change of 
soil pH from 6 to 8 corresponds to a hundred-fold decrease in the hydrogen ion activity. 

The pH of applied irrigation water can affect irrigation equipment or cause calcite (i.e. lime) deposits on 
vegetation. Regarding irrigation equipment, the pH is one of several water quality factors than can influence 
corrosion of galvanized pipes or other metallic parts. The pH can also influence precipitation of calcite 
(CaCO3) at the orifices of drip emitters or minisprinklers which will affect the system’s overall performance. 
This can be problematic if alkaline irrigation water, combined with sufficiently high bicarbonate and calcium 
concentrations, is used over the long term without periodic acid flushes to reduce scale buildup. Calcite 
precipitation becomes more problematic if the pH of the applied irrigation water exceeds 8.5. In addition, if 
such water is sprinkler irrigated above the canopy, it can cause unsightly white deposits that form on leaves 
and fruit. While these deposits typically do not cause harm to the crop, they nonetheless can affect the 
aesthetic quality. Acid additions to the irrigation water will not only reduce the pH but will reduce the [HCO3

-], 
reducing the potential for CaCO3 precipitation. Acid additions convert bicarbonate to carbon dioxide (CO2) 
gas. 

As the applied irrigation water infiltrates the soil, it interacts with the soil minerals. Therefore, the pH of the 
infiltrating water will change as it interacts with soil minerals, but soils are typically well buffered, as are soils 
in the FWA service area. Well buffered soils resist large changes in pH in the soil solution. The seasonal 
average pH of the irrigation water ranges from 7.1 to 8.4 depending upon the mixture of FKC water and 
California Aqueduct water. Because of the buffering capacity of the soil, this range in applied irrigation water 
pH will make little impact of the pH of the soil solution. 

The pH of the soil solution has a profound influence on plant nutrient availability, nutrient uptake and ion 
toxicity to plants. The vast majority of soils that are cultivated for crop production around the world fall within 
the neutral, slightly acid and slightly basic pH range (i.e. pH 6-8). This is the general range where nutrient 
availability is optimal. However, there are those soils where the pH falls far from this normal range and these, 

VALUE1 FKC,2 3 CVC2, 4 INTERMEDIATE5 CHECK 216 

Average 3.54 4.37 1.55 0.92 

Maximum 6.16 8.24 2.00 1.00 

Minimum 0.17 2.14 1.20 0.77 

Note: 
Based on molar or equivalent concentrations. 
1 March through October period.  
2 Water quality data from AEWSD grab samples lab data from 2011 – 2017. 
3 Sample taken at terminus of FKC. 
4 Sample taken at AEWSD CVC, Pumping Plant 6 or 6B Forebay. 
5 Weighted average of CVC and Check 21 water quality. 
6 California Aqueduct measured at Check 21 from 1968-2017. 
Key 
AEWSD = Arvin Edison Water Storage District 
Check 21 = Check Structure 21 at milepost 172,40 on the California Aqueduct 
CVC = Cross Valley Canal 
FKC = Friant-Kern Canal 
Intermediate = Water quality representing the average of California Aqueduct Check 21 and Cross Valley 
Canal water qualities 
SAR = sodium adsorption ratio 
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if not corrected to an adequate range, can pose adverse effects on crops. Soils that are highly acidic (pH < 
5.5) or highly alkaline (pH > 8.5) present a spectrum of challenges for the plant including nutrient 
availability, ion toxicities, and nutrient imbalances influencing the ion relations and nutrition within the plant 
itself (Läuchli and Grattan, 2012).  

Most nutrients are not equally available to plants across the pH spectrum (Epstein and Bloom, 2005). Several 
mineral nutrients are severely affected in these non-optimal pH soils, particularly calcium, potassium, 
phosphorus, and iron. The reactions of plants to these nutrient elements under extreme soil pH conditions 
can affect plant growth, physiological processes and their morphological development (Läuchli and Grattan, 
2012). The majority of the soils irrigated with waters from districts within the FWA, however, fall in the 
slightly alkaline range with the pH in the rootzone between 7.5 and 8.3 (UC Davis Soilweb 
https://casoilresource.lawr.ucdavis.edu/gmap/). Therefore, these soils are slightly alkaline, based largely on the 
natural abundance of calcite in the soil, and are at the upper end of the optimal pH range. Depending on the 
alkalinity of the soil water and [Ca2+], some of the Ca2+ can precipitate out as CaCO3 which decreases the 
calcium-magnesium ratio. Intermittent injection of acids in the applied irrigation water will reduce the pH 
and, consequently, the alkalinity of the water. Not only is this a maintenance measure to reduce calcite 
buildup on the orifices of drip emitters and minisprinklers, it drops the pH of the water which decreases 
bicarbonate, increases the [Ca2+] and availability of other plant nutrients. Most growers in the San Joaquin 
Valley have some maintenance, acid-injection program in place. However, in Kern county, this may not be 
common practice in all districts. Acid applications, the residual gypsum in the soil and periodic applications 
of additional gypsum, are all a means of providing sufficient free Ca2+ in soils in Kern country. Moreover, 
increasing the [Ca2+] in the soil water simultaneously improves the calcium-magnesium ratio. 

Sprinkler irrigated fruit and vegetable crops (approximately 20% of studied districts) could be susceptible to 
formation of white deposits on leaves and fruit, or “white wash,” and reduced marketability if bicarbonate 
concentrations, or [HCO3], in applied irrigation water are too high (> 1.5 meq/L, leaving a white residue on 
the crop surface. Bicarbonate concentrations in the California Aqueduct water theoretically could cause 
“white washing” under sprinkler irrigation, especially during dry and breezy conditions. “White washing” is a 
concern to some growers and has been seen by growers occasionally in the study area; however, it is not 
known what the exact cause of the “white washing” was, whether it was from undiluted California Aqueduct 
water or some other source. Bicarbonate levels of 1.5 meq/L or 92 mg/L and higher may increase formation 
of white deposits. The seasonal average for [HCO3] of CVC water is 78.5 mg/L. While this concentration is 
less than 92 mg/L, special management practices may be needed to mitigate or avoid “white wash” impacts 
during periods of elevated bicarbonate levels. These may include blending with higher quality sources or 
changing irrigation methods away from sprinklers that wet the foliage (Provost & Pritchard, 2012).  

CORROSION AND DEGRADATION OF MATERIALS 
The comparison of corrosion potential of California Aqueduct water and FKC water from Millerton Lake was 
performed by Provost & Pritchard in 2012 on several chemical constituents and calculated indices including: 
pH, Langelier Index, Ryzner Index, EC, resistivity, sulfates, and chlorides. This comparison generally showed 
that FKC water has a slight tendency to degrade concrete structures by leaching out minerals, but metallic 
corrosion will be low. Comparatively, California Aqueduct water will have a lower tendency to leach out 
minerals from concrete, and will have a more corrosive effect on metals, although there is only a slight 
difference between the two water sources in either case (Provost and Pritchard, 2012).  

Materials such as brass, bronze, PVC, polyethylene, and stainless steel usually have a high corrosion 
tolerance, and therefore would not likely be affected by the exchange of source waters. The forecasted 
increase in corrosion from using more California Aqueduct water is likely manageable with the use of special 
coatings and proper selection of new materials and would likely result in minor increase in O&M costs 
(Provost and Pritchard, 2012).  

https://casoilresource.lawr.ucdavis.edu/gmap/
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AGRONOMIC LEACHING REQUIREMENTS 
Agronomic leaching is the application of irrigation water in excess of the soil water holding capacity to 
neutralize the agronomic effects associated with increased salinity and ion toxicity in the crop rootzone. This 
approach aims to balance concerns related to long-term groundwater quality with a multi-layered assessment 
of agronomic impacts as a durable solution. The amount of leaching required, referred herein as 
maintenance leaching, depends upon the sensitivity of the crop to salinity and the irrigation water salinity. 
The higher the salinity of the applied irrigation water and the more sensitive the crop is to salinity, the greater 
the amount of leaching is required. This same leaching concept can also be applied to chloride and boron. 

LEACHING FRACTION VS LEACHING REQUIREMENT 
Often, leaching fraction (LF) and leaching requirement (LR) are used interchangeably. The two, in fact, are 
different. The LF is defined as the volume of water that drains below the rootzone divided by the volume of 
water that infiltrates the soil surface (equivalent to applied irrigation water assuming no surface runoff or 
evaporation). The LF can also be estimated based on the salinity of the applied irrigation water, or [ECw], and 
that of the drainage water, or [ECdw], where LF = ECw/ECdw. The crop roots extract water from the rootzone 
leaving the salts behind. If the crop rootzone is divided in quarters, typically the top quarter uses 40% of the 
water, the second quarter 30%, third quarter 20% and bottom quarter 10%. Therefore, the salt concentration 
increases with soil depth. The lower the LF, the more salts accumulate and concentrate at lower depths. 
Figure 2 is a representation of this relationship under conventional irrigation. The relationship between 
irrigation water salinity (ECw) and soil salinity (ECe) is linear but the slopes of the relationships are dependent 
upon the LF. The slopes decrease with increasing LF. The higher the LF, the higher the irrigation water 
salinity can be to maintain the yield of a crop. In Figure 2, note the dashed lines along the y-axis indicating 
the general salt tolerant categories as the salinity of the applied irrigation water changes. 

Key: 
dS/m = deciSiemens per meter (1 µS/cm = 1 µmhos/cm = 1/1,000 dS/m) 
LF = leaching fraction  

Figure 2. Relationship Between Soil Salinity (ECe) and Salinity of the Applied Irrigation Water (ECw) under a Series of Steady-State Leaching 
Fractions (0.05 to 0.80) (from Ayers and Westcot, 1985) 
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The LF concept is attractive in that it allows predictions of average rootzone salinity (ECe) conditions  from 
the applied irrigation water EC (ECw) and assumed LF. Knowing the scientifically determined salinity 
threshold value (ECet) for a particular crop, one can use this relationship to determine the maximum 
irrigation water salinity (ECw) for a given LF. The relationship between ECw, ECe, and LF also depends on 
irrigation management. That is, ECe = Concentration Factor (Fc) * ECw where ‘Fc’ depends not only on the LF 
but the type of irrigation method. Applicable Fc values for conventional irrigation methods such as furrow or 
flood, and high frequency irrigation methods, such as drip and minisprinklers, are provided in Table 6. 

Table 6. Concentration Factor Values for Conventional and High Frequency Irrigation (adapted from Suarez, 
2012)  

LEACHING FRACTION (LF) CONCENTRATION FACTOR (FC) 
Conventional Irrigation High Frequency Irrigation 

0.05 2.79 1.79 
0.10 1.88 1.35 
0.20 1.29 1.03 
0.30 1.03 0.87 
0.40 0.87 0.77 
0.50 0.77 0.70 

 

The difference in Fc values between conventional and high frequency irrigation is largely based on how crop 
roots respond to the salinity in the rootzone. Under conventional irrigation, crops typically respond to the 
average rootzone salinity (i.e. the seasonal average of the four rootzone quarters of salinity). Under high 
frequency irrigation, crops respond to the water uptake weighted salinity (i.e. the salinity in the top quarter is 
weighted 40 percent, salinity in the second quarter is weighted 30 percent, and so on). Because the salinity 
in the top quarter is lower where evapotranspiration (ET) is higher and higher in bottom where ET is lower, 
the average rootzone salinity is lower under high frequency irrigation.  

The LR, on the other hand, is the lowest LF needed to sustain maximum yield given the applied irrigation 
water salinity concentration, or [ECw], and yield threshold for the given crop. In other words, it is the 
minimum leaching needed, given the crop type and water quality, to maintain the salinity (or chloride or 
boron), at the maximum rootzone concentration in the rootzone that the crop can tolerate. Any increase in 
rootzone concentration above this maximum level will cause injury or yield reductions. LR is an attractive 
concept because, given an irrigation water quality and crop sensitivity, the minimum leaching needed to 
sustain the rootzone salinity ECe, rootzone chloride (Cl-e), or rootzone boron (Be) at levels that would avoid or 
reduce damage or yield losses can be estimated. 

LR can be estimated using the following equation (Rhoades and Merrill, 1976; Ayers and Westcot, 1985): 

𝐿𝐿𝑆𝑆% =  
𝐸𝐸𝐶𝐶𝑤𝑤

5(𝐸𝐸𝐶𝐶𝑒𝑒𝑒𝑒)− 𝐸𝐸𝐶𝐶𝑤𝑤
 𝑥𝑥 100 

ECw= Electrical conductivity of irrigation water 
ECet= Soil salinity threshold for a given crop 

Note that the LR relationship can apply to chloride and boron by substituting their respective irrigation water 
concentrations (i.e. Cl-w or Bw) and their threshold values (Cl-et or Bet). The LR equation assumes that crops 
respond to an average rootzone salinity created by a 40-30-20-10% root water extraction pattern, similar to 
LF predictions using conventional irrigation. The difference is that LR predicts the minimal LF to achieve 
maximal yields whereas the LF approach assumes an LF first, then predicts what the ECe will be given the 
ECw of the irrigation water. Both are similar but solve the problem from different directions.  
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LIMITATIONS TO THE STEADY-STATE LEACHING CONCEPT 
The leaching fraction or requirement is an attractive concept but has limitations. First, the leaching concept 
assumes steady-state conditions and thus has no time element. Therefore, there is no accounting for how 
long leaching will take, which will differ depending upon the permeability of the soils. Second, the 
evapotranspiration (ET) of the crop is assumed to be independent of the average rootzone salinity, but it is 
not (Letey and Feng, 2007). A salt-stressed crop will use less water than a non-stressed crop. Consequently, 
crop ET will be reduced, and leaching, with the same quantity of applied irrigation water, will be increased. 
And third, in drip irrigated fields, actual LFs are difficult to quantify because LF, soil salinity, soil water 
content, and root density all vary with distance and depth from the drip lines.  

In light of these limitations, recent studies have shown that the ECw and ECe relations described by Ayers and 
Westcot (1985), which are based on steady-state LF conditions, tend to be too conservative and overestimate 
soil salinity and, therefore, overestimate yield losses in most cases (Corwin and Grattan, 2018; Letey et al., 
2011). Transient-state models may more accurately predict soil salinity, as well as soil chloride, sodium and 
boron, but they are more complicated and require many more site-specific inputs and assumptions. 
Therefore, transient models are still too cumbersome and time consuming to replace steady-state models. 

The LF and LR concepts are both steady-state, so they assume the amount of irrigation is not limiting.  The 
amount of water needed for irrigation can be estimated as:  

AW = ET/(1-LR) 

AW = applied water 
ET = evapotranspiration or crop water requirement 
LR = leaching requirement 

The units for applied water (AW) and ET or crop requirement are typically depths of water (i.e. inches or 
millimeters). But in many cases, the amount of water is limiting and therefore crops can be under-irrigated 
and therefore not achieve the required leaching. In this case, the salts in the crop rootzone will increase over 
time. At some point, depending upon the salinity of the imported water and crop sensitively, the salt content 
(or chloride or boron) can exceed the threshold level. Because the threshold values are based on seasonal 
averages, exceedances above the threshold are allowed to some degree without experiencing a reduction in 
yield. For example, if the average Cl-e was 100 mg/L for the first 2/3 the season and then reached 200 mg/L 
for the last 1/3 of the season due to insufficient leaching, almonds on “Nemaguard” rootstock would not be 
expected to be damaged because the seasonal average Cl-e would be 133 mg/L given the Cl-e threshold is 150 
mg/L. Nevertheless, if the required leaching is not achieved, reclamation leaching would be required. 
Similarly, if the preseason soil salinity is over 150 mg/L and little to no leaching is applied during the season, 
injury would be expected to develop on almonds on “Nemaguard” rootstock. Therefore, the LR values for 
various crops and salinities are based on soils where the maintenance leaching fraction is achieved each 
irrigation. If the pre-existing soil salinity is initially high, then the soil is not at steady-state. 

DIFFERENCE BETWEEN MAINTENANCE LEACHING AND 
RECLAMATION LEACHING 
There is a distinct difference between maintenance leaching and reclamation leaching. Maintenance leaching 
occurs during each irrigation by applying more irrigation water than the soil can hold. This is the leaching 
fraction or requirement concept described above. Therefore, the AW is higher than the ET to accommodate 
the necessary leaching (see equation above). Reclamation leaching, on the other hand, occurs at the end of 
the irrigation season by applying excess irrigation water to flush the salts from the crop rootzone. Ideally, 
reclamation leaching would not be required if correct maintenance leaching is achieved each irrigation during 
the irrigation season. However, because some fields may not get the necessary leaching, salts can 
accumulate, and fields may require reclamation leaching at some time. In addition, low pressure systems 
such as drip and mini-sprinkler systems produce characteristic salt accumulation patterns in fields, even with 
sufficient downward leaching. Whether salts are building up in the rootzone or between drippers or 



December 2022 | Attachment C – Agronomic Impacts and Mitigation 12 

minisprinklers, reclamation leaching is a valuable preventative measure from time to time at the end of the 
irrigation season.  

At the end of the irrigation season, salt can be removed by sprinkler irrigation (i.e equivalent to intermittent 
ponding). Figure 3 shows the extent of leaching needed to address rootzone salinity. For example, if the 
average rootzone salinity (ECe) at the end of the season is 3000 μS/cm and the goal is to reduce the salinity 
in the soil down to 600 μS/cm the salinity needs to be reduced to 600/3000 = 0.2 (y-axis) or 20% of what it 
was before leaching. Then the amount of sprinkler irrigation water to apply is 0.5 ft (x-axis) for every foot of 
soil to reclaim. If the goal is to reduce the top 2 feet, then 0.5 x 2ft = 1ft of water would be needed. This 
assumes the combined rainfall and applied reclamation leaching water needed. 

 

Figure 3.  Reclamation Leaching Function under Sprinkler Irrigation or Intermittent Ponding (Ayers and Westcot, 1985).  

The amount of reclamation leaching can be reduced by the amount of effective rainfall. To take advantage of 
rainfall, reclamation leaching should ideally take place after the rainfall season but before spring budding and 
leaf out begins, typically from October/November through March.  

LEACHING AND NITROGEN MANAGEMENT 
It is also important to address nitrogen management strategies combined with the salt leaching strategies. 
Unlike salts, nitrogen is very dynamic in the rootzone as it undergoes form changes from organic pools to 
inorganic fractions (primarily nitrate [NO3

-] and ammonium [NH4
+]). Ammonium, and particularly nitrate, are 

the forms primarily taken up by plants. Nitrate, being an anion, is relatively mobile in soils and is highly 
susceptible to leaching below the rootzone. Once nitrate leaches below the rootzone, chemical 
transformations are less likely to occur, and nitrate commonly continues leaching downward and eventually 
ends up in the aquifers. A 2002 study conducted by the Lawrence Livermore National Laboratory concluded 
that nitrate contamination in groundwater is “the number-one contaminant threat to California’s drinking 
water supply” (LLNL 2002). 

Rootzone salinity control and nitrogen management is a conflicting problem. It is necessary to leach salt from 
the rootzone to avoid damage from salinity or ion toxicity, but nitrates will unavoidably be leaching below the 
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rootzone as well. If soil salinity is low at the beginning of the irrigation season (see reclamation versus 
maintenance leaching), then leaching at less than the critical LR is possible to avoid salt damage. Then, 
salinity in the profile will steadily build up over the season while soil nitrogen will be depleted due to crop 
uptake. At the end of the irrigation season, salinity will be the highest, and nitrate will be the lowest. 
Therefore, reclamation leaching can be implemented at the end of the irrigation season, and the process 
cycle repeats itself. 

MITIGATION LEACHING REQUIREMENTS 
ESTIMATING LEACHING REQUIREMENTS FOR MOST SENSITIVE 
CROPS 
The most sensitive crops in the Friant Division were used for this analysis. Crops selected were based on their 
varied sensitivities to salinity, chloride, and boron. By using the most sensitive crops, all crops with higher 
tolerances should also be protected. The most salt-sensitive crops, or those with the lowest soil salinity 
threshold (ECet), are beans, carrots, onions (seed), melons, and strawberries. All have an ECet of 1000 μS/cm. 
For chloride, the most sensitive crops are almonds and other stone fruits on “Nemaguard” rootstock. The 
threshold Cl-et

1 is estimated to be 150 mg/L. The relationship between boron in the applied irrigation water 
and the saturated soil paste is more complicated because of boron’s high affinity to adsorb onto the soil. 
Irrigation water with higher boron concentrations than predicted can be used until the boron saturates the 
soil adsorption sites. Because of this complexity, Ayers and Westcot (1985) concluded that the “…maximum 
concentration (of boron) in the irrigation water are approximately equal to these values (boron tolerance 
reported based on soil water bases) or slightly less,” suggesting that applied irrigation water tolerances 
would be 0.5 – 0.75 mg/L which would protect the most sensitive crops.. However, over the long term (more 
than several years), boron will behave similarly to salts and chloride (D. Suarez, US Salinity Laboratory, 
personal communication). With the boron threshold for soil water ranging from 0.5 – 0.75 mg/L, the Bet is 
equivalent to half of the soil water concentration, or 0.25 – 0.375 mg/L. For more information on conversions 
from saturated soil paste to soil water concentrations, see Ayers and Westcot (1985). To be conservative, and 
based on the above tree and vine crop sensitivities, the Bw threshold is assumed to be 0.25 mg/L.  

Table 7 shows the acreage and percentage of sensitive crops for representative water districts, and 
sensitivities to boron, chloride, and EC within each representative water district. 

  

 
1 It is important to note that most ‘threshold’ values for chloride and boron reported in literature (e.g. Grieve et al., 2012) are 
based on the soil water concentration. The saturated soil paste concentration (i.e. Cl-e or Be) for most mineral soils is about half 
this value over the long-term (Ayers and Westcot 1985). 
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Table 7. Percentage and Area of Sensitive Crop Types within Representative Water Districts 

CROP TYPE 

WATER DISTRICT 
AEWSD DEID KTWD SID SSJMUD SWID 

% Acres % Acres % Acres % Acres % Acres % Acres 
Boron 
Sensitive5 

15% 18,883 5% 2,842 30% 5,969 6% 1,211 8% 4,629 1% 358 

Berries1 1% 761 2% 873 1% 200 n/a <1% 63 n/a 
Cherries 2% 2,196 <1% 228 1% 160 <1% 22 <1% 211 1% 358 
Citrus 11% 15,024 2% 1,301 28% 5,609 4% 825 7% 4,355 n/a 
Stone Fruits4 1% 902 1% 440 n/a 2% 364 n/a n/a 
Chloride 
Sensitive6 

6% 7,593 22% 12,399 5% 1,040 17% 3,366 22% 13,577 56% 21,649 

Almonds 
(Nemaguard 
rootstock) 

6% 7,593 22% 12,399 5% 1,040 17% 3,366 22% 13,577 56% 21,649 

EC 
Sensitive7 

7% 8,490 <1% 175 n/a <1% 50 1% 375 2% 862 

Carrots 3% 3,748 <1% 100 n/a n/a <1% 148 2% 784 
Melons2 1% 777 <1% 74 n/a <1% 50 n/a <1% 75 
Onions3 3% 3,961 n/a n/a n/a <1% 228 <1% 1 
Strawberries <1% 4 n/a n/a n/a n/a <1% 2 
Source: Data compiled from California Department of Water Resources Land Use Viewer (2017) developed by LandIQ using 2014 land 
use data. Districts provided updates to 2017 land use data where appropriate. DEID data was provided by the District, and data gaps were 
filled with LandIQ data.  
Notes: 
Grape Crops in DEID take up 43% (26,443 ac) of the District’s land area. 
“n/a” indicates that there is zero amount of a crop type in a district.  
1  Data Source lists Berries as “Bush Berries” 
2  Data Source groups Melons with Squash and Cucumbers 
3  Data Source groups Onions with Garlic 
4  Stone Fruits include Apricots, Nectarines, Peaches, Plums, and Prunes 
5  Boron Sensitive Crops include Berries, Citrus, and Stone Fruits 
6  Chloride Sensitive Crops include Almonds 
7  EC Sensitive Crops include Carrots, Melons, Onions, and Strawberries 
Key: 
% = percentage 
AEWSD = Arvin-Edison Water Storage District 
DEID = Delano-Earlimart Irrigation District 
KTWD = Kern-Tulare Water District 
n/a = not applicable 
SID = Saucelito Irrigation District 
SSJMUD = South San Joaquin Municipal Utility District 
SWID = Shafter-Wasco Irrigation District 
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DEVELOPING MITIGATION LEACHING CURVES 
This section describes quantification of mitigation based on leaching requirements for sensitive crops. This 
approach does not directly address the physical characteristics or dynamic nature of the rootzone, but rather 
is specific to sensitive crop types grown in the region and implementing sufficient leaching volumes to 
prevent crop injury. In addition, the volumetric mitigation quantified through this approach is not specific to a 
water district but is representative of all crops grown in the Friant Division.  

For salinity, ECet values were used to calculate LR values, as presented in Table 8 in percentages. For 
chloride or boron the same LR equation is used except irrigation water concentrations (i.e. Cl-w and Bw) in 
mg/L are used in place of ECw and respective threshold Cl-e and Be are used in place of ECet. At each location, 
the quantified LR by water quality constituent is based on the most stringent LR, which assumes all water is 
applied to the most sensitive crop. Analysis shows a long-term LR between 5.2 and 19 percent, using the 
average, seasonal statistics for EC, chloride, and boron concentrations.  

Table 8.  Leaching Requirements for Various Sensitive Crops by Water Source and Water Quality Constituent  
MOST 

SENSITIVE 
CROP 

CVC INTERMEDIATE CHECK 21 

 EC Cl- B EC Cl- B EC Cl- B 
Carrots, 
onions, 
melons, 

strawberries 

6.7% - - 8.6% - - 10.6% - - 

Almonds 
(Nemaguard 

rootstock) 
- 5.2% - - 8.1% - - 11.1% - 

Stone fruits, 
citrus, berries - - 8.0% - - 13.6% - - 19.0% 
Key: 
B = boron 
Check 21 = Check Structure 21 at milepost 172,40 on the California Aqueduct 
Cl- = chloride 
CVC = Cross Valley Canal 
EC = electrical conductivity 
Intermediate = Water quality representing the average of California Aqueduct Check 21 and Cross Valley Canal water qualities 
 

Figures 4 through 6 show mitigation rating curves based on LR percentages, source water quality, and 
constituents of concern. Each mitigation rating curve was extended to show the maximum observed 
concentration from historical water quality data for both CVC and California Aqueduct Check 21 sources. 

The LR percentages presented in Table 8 and Figures 4 through 6 represent quantified volumetric mitigation 
that would be applied as maintenance leaching. Maintenance leaching occurs at each irrigation  by applying 
more water than the soil can hold, or in other words, the applied irrigation water is more than the crop 
requirement to accommodate the necessary leaching. The quantified LR assumes long-term steady-state 
conditions and does not account for leaching from rain or end-of-season reclamation practices. Any rain or 
end-of-season leaching will decrease the presented values. 

The quantified LR assumes mitigation water is delivered and applied at the same time as surface water 
delivery is taken. In addition, it assumes mitigation water is of the same water quality as the surface water 
delivery. Therefore, mitigation is only quantified for water of the same imported quality and not for both 
reverse flow pump-back and Millerton Lake supplies. If maintenance leaching practices are followed, 
reclamation leaching is unnecessary, except for in driest of years when surface supply does not meet 
irrigation demand or to leach salts that have accumulated between drip emitters and mini sprinklers. Using 
the most stringent LR, it is assumed all mitigation water is applied to the most sensitive crop. 
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Key:  

Check 21 = California Aqueduct Check 21 
CVC = Cross Valley Canal 
EC = electrical conductivity 
μS/cm = microsiemens per centimeter (1 µS/cm = 1 µmhos/cm = 1/1,000 dS/m) 
Intermediate = Water quality representing the average of California Aqueduct Check 21 and Cross Valley Canal water qualities 
 

 

Figure 4.  Leaching Requirement for Electrical Conductivity  

 
Key:  

Check 21 = California Aqueduct Check 21 
CVC = Cross Valley Canal 
EC = electrical conductivity 
Intermediate = Water quality representing the average of California Aqueduct Check 21 and Cross Valley Canal water qualities 
mg/L = milligrams per liter 
 

 

Figure 5.  Leaching Requirement for Chloride 
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Key: 
Check 21 = California Aqueduct Check 21 
CVC = Cross Valley Canal 
Intermediate = Water quality representing the average of California Aqueduct Check 21 and Cross Valley Canal water qualities 
mg/L = milligrams per liter 
 

Figure 6. Leaching Requirement for Boron 

Leaching Requirement Normalization  
In order to best understand the LR relationships amongst EC, chloride, and boron and to confirm the 
dominant constituent trend, individual rating curves were normalized to an EC concentration scale. The EC 
concentration was used as it can be easily measured in real-time. Figure 7 shows the stacked, normalized 
mitigation rating curves for all three constituents of concern. Boron is the dominant or driving constituent 
and has the highest LR, regardless of source water quality. The required leaching based on that curve would 
be sufficient to prevent crop injury due to increased EC or chloride concentrations in applied irrigation water, 
and, therefore, the boron curve is the proposed mitigation rating curve for the Water Quality Mitigation 
Ledger (Figure 8). The method for normalizing each constituent curve is described below.  
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Key: 
μS/cm = microsiemens per centimeter (1 µS/cm = 1 µmhos/cm = 1/1,000 dS/m) 
EC = electrical conductivity 

Figure 7. Rootzone Leaching Curves for Electrical Conductivity, Chloride, and Boron Normalized to an Electrical Conductivity 

 
Key: 
μS/cm = microsiemens per centimeter (1 µS/cm = 1 µmhos/cm = 1/1,000 dS/m) 

Figure 8. Proposed Mitigation Rating Curve based on Boron Sensitivity and Normalized to Electrical Conductivity 

Normalization Method 
As the three constituent curves have differing concentration scales and they do not show direct correlations 
to each other, the constituents were normalized to a common scale using the below equation.  

𝑋𝑋𝑛𝑛𝑒𝑒𝑤𝑤 =  
𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑛𝑛

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑛𝑛
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In the equation, X represents the constituent concentration for EC, chloride, or boron. Xmin is the minimum  
average, seasonal, observed concentration for a given constituent from either California Aqueduct Check 21 
or CVC water quality data. The maximum observed concentration corresponded with varying leaching 
requirements for each of the constituents. To ensure that all constituents were normalized to the same scale 
and the full range of possible constituent concentrations was considered beyond the highest observed 
concentration for California Aqueduct Check 21 water, Xmax represents the constituent concentration 
corresponding to a 25 percent LR. Figure 9 displays the normalized curves, and Table 9 presents the 
normalized data.  

 
Key: 
EC = electrical conductivity 

Figure 9. Normalized Leaching Requirement curves for Electrical Conductivity, Chloride, and Boron  

Normalized concentration values were then converted back to EC using the equation below, where Xnorm 

represents the normalized concentration for chloride or boron. LR curves were then replotted using an EC 
scale (Figure 7).  

𝐸𝐸𝐶𝐶 =  𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚(𝐸𝐸𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸𝐶𝐶𝑚𝑚𝑚𝑚𝑛𝑛) + 𝐸𝐸𝐶𝐶𝑚𝑚𝑚𝑚𝑛𝑛 

 



December 2022 | Attachment C – Agronomic Impacts and Mitigation 20 

Table 9. Constituent Normalization 
SOURCE 
WATER 

ELECTRICAL CONDUCTIVITY  CHLORIDE  BORON 

 
Observed 

Concentration 
(μS/cm) 

Normalized 
Value  

Leaching 
Requirement 

Observed 
Concentration 

(Seasonal 
Average) 
(mg/L) 

Normalized 
Value  

Leaching 
Requirement 

Observed 
Concentration 

(Seasonal 
Average) 
(mg/L) 

Normalized 
Value  

Leaching 
Requirement 

CVC 315 0.06 6.7% 37.00 0.12 5.2% 0.10 0.06 8.0% 
Intermediate 397 0.17 8.6% 56.00 0.27 8.1% 0.15 0.38 13.6% 

Check 21 479 0.29 10.6% 75.00 0.41 11.1% 0.20 0.69 19.0% 
Maximum 
Observed 805 0.73 19.2% 157.00 1.05 26.5% 0.25 1.00 25.0% 
Maximum 

normalization 
(25% Leaching 
Requirement) 1000 1.00 25.0% 150.00 1.00 25.0% 0.25 1.00 25.0% 

Key: 
CVC = Cross Valley Canal 
μS/cm = microsiemens per centimeter 
mg/L = milligrams per liter 
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APPLIED AGRONOMIC THRESHOLDS 
The Policy includes maximum water quality thresholds for the FKC. Although the mitigation rating curve 
quantifies mitigation water to account for appropriate maintenance leaching, FKC water quality thresholds for 
EC, chloride, boron, turbidity, total suspended solids (TSS), and SAR and sodium were developed and are 
proposed herein. These thresholds aim to (1) balance supply reliability, water quality concerns, and 
agricultural practices, such as regulated deficit irrigation (RDI); and (2) ensure that the ECet, Cl-et, or Bet limits 
are not exceeded for the most prevalent and sensitive crops in the Friant Division. The thresholds are specific 
to three irrigation periods that correspond to the growing season and agricultural management practices 
during the year:  

• Period one represents the beginning of the growing season (March 1 – June 30);  

• Period 2 represents timing of hull split and the duration of RDI practices in the Friant Division (July 1 
– August 31); and  

• Period 3 is inclusive of the remainder of the growing season and contract year (September 1 – 
February 28).  

Table 10 shows the established water quality constituent thresholds for each period as defined in the Policy. 
The threshold variations in Period 3, shown as Periods 3a and 3b, are described in more detail in the 
Threshold Flexibility subsection below. 

Sections below describe methods applied to account for annual RDI practices; development of water quality 
thresholds, including thresholds for RDI; and adjustments to water quality thresholds to accommodate 
flexibility for water management within the Friant Division. 
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Table 10. Friant-Kern Canal In-Prism Water Quality Thresholds 

Period 
Salinity 

expressed 
as EC 

(μS/cm) 

Chloride 
(mg/L) 

Boron 
(mg/L)1 

Turbidity 
(NTU)6 

Total 
Suspended 

Solids 
(ppm) 

SAR7 Sodium 
(mg/L)7 

Period 1 
March 1 – June 30 1,0002 1023 0.4 40 20 3 69 

Period 2 
July 1 – August 31 5004 554 0.4 40 20 3 69 

Period 3a 
September 1 – 

February 28 
1,0002 1023 0.4 40 20 3 69 

Period 3b 
September 1 – 

February 28 
1,0002 1235 0.4 40 20 3 69 

 Notes: 
Thresholds adapted from Grieve, C.M., S.R. Grattan and E.V. Maas. 2012. Plant salt tolerance. In. (W.W. Wallender and K.K. Tanji, 
eds). Agricultural Salinity Assessment and Management (2nd edition). ASCE pp 405-459; and Ayers, R.S. and D.W. Westcot 1985. 
Water quality for agriculture. FAO Irrigation and Drainage Paper 29 (rev 1). Food and Agriculture Organization of the United Nations. 
Rome 
For addition detail, see Attachment C – Agronomic Impacts and Mitigation. 
When Friant-Kern Canal in-prism water quality conditions in this table are exceeded, Friant Division Long-Term Contractors will work 
together to seek 1:1, unleveraged, and cost-neutral exchanges for pump-in and pump-back programs. This does not apply to spot-
market or third-party exchanges.  
1 Grapes are used as a representative crop for boron sensitivity and are prevalent in the Friant Division. They are used as a surrogate 
for many other sensitive crop types such as apricots, figs, and grapefruits. Threshold assumes conventional irrigation with minimum 20 
percent leaching fraction applied. 
2 Threshold assumes minimum of 20 percent leaching requirement applied and adjusted to account for regulated deficit irrigation 
during almond hull split period (July 1 – August 31) in order to not exceed maximum ECet. Almonds on Nemaguard rootstock are used 
as a representative crop for salinity sensitivity and are prevalent in the Friant Division. They are used as a surrogate for many other 
sensitive crop types such as apples, cherries, pears, pistachios, and walnuts.  
3 Threshold assumes minimum of 20 percent leaching requirement applied and then adjusted to account for regulated deficit irrigation 
during almond hull split period (July 1 – August 31) in order to not exceed maximum Cl-et. Almonds on Nemaguard rootstock used as a 
representative crop for chloride sensitivity. They are used as a surrogate for other sensitive crops including cherries, pistachios, and 
walnuts. 
4 Threshold applies to almond hull split period when regulated deficit irrigation is applied to avoid hull rot. This threshold is used 
assuming irrigation applications are reduced to 50 percent of the tree water requirement and subsequently thresholds applied for the 
remainder of the year have been adjusted to account for additional salt accumulation. This threshold was developed with consideration 
of existing program operations, historical water quality data, and absolute water quality thresholds.  
5 If the measured average chloride concentration in Period 1 (March 1 – June 30) is less than or equal to 70 mg/L, the allowable 
chloride threshold for Period 3 (September 1 – February 28) is increased to 123 mg/L. 
6. Turbidity threshold is taken from section 3 of the Final Initial Study/Negative Declaration for: Warrant Act Contract(s) and License, and 
Operation and Maintenance Agreement, to Introduced Floodwaters from Reclamation District 770 into the Friant-Kern Canal, March 2017. 
7. SAR and Sodium are managed together. If the measured SAR value exceeds 3 AND the measured sodium concentration exceeds a 
threshold of 69 mg/L, management will be necessary. SAR value is derived from Ayers Table 1 and the 69 mg/L sodium is derived and 
converted from the Ayers Table 6. 

Key: 
µS/cm = microsiemens per centimeter (1 µS/cm = 1 µmhos/cm = 1/1,000 dS/m) 
ASCE = American Society of Civil Engineers 
Cl-et = maximum chloride threshold of the saturated soil paste 
EC = electrical conductivity of applied water 
ECet = Soil salinity threshold for a given crop 
FAO = Food and Agriculture Organization of the United Nations 
Friant Division = Friant Division of the Central Valley Project 
mg/L = milligrams per liter 
SAR = sodium adsorption ratio 
TDS = total dissolved solids 
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REGULATED DEFICIT IRRIGATION 
This section describes methods applied to account for annual RDI practices in the Friant Division for EC and 
chloride agronomic thresholds, specific to almonds. Note, grapes may also be deficit irrigated during the 
blooming period; however, the deficit irrigation period for grapes is not aligned with that of almonds, and 
grapes are most prone to boron toxicities. Consequently, a similar RDI analysis and threshold adjustment is 
unnecessary for grapes. See Boron Thresholds subsection in Water Quality Thresholds section for additional 
discussion on applied boron thresholds for grapes in the Friant Division. 

Hull Rot Control 
Hull rot is problematic in almond orchards in the San Joaquin Valley, and trees are particularly sensitive 
during the hull split period. Hull split is where 1 percent of the almonds exhibit split, and it typically lasts one 
to two weeks. The initiation of hull split depends on the almond variety, weather conditions, and tree stress. 
Although variety has the largest influence on hull-split timing, the temperature 90 days after flowering also 
affects the hull split initiation. Unseasonably cool temperatures delay hull split while unseasonably warm 
weather accelerates it.  

Hull rot occurs due to infestation by one of two types of fungi, Monilinia fructicola or Rhizopus stolonifera 
(Holtz, 2009). Some almond varieties, particularly Nonpareil and Monterey, are more susceptible to fungal 
attack than are other varieties. High nitrogen application to an orchard combined with full irrigation, or 
irrigation to completely meet tree ET demands, at the time of hull split can make trees considerably more 
vulnerable to hull rot.  

Hull rot can be largely controlled through a combination of nitrogen management, water management, and 
antifungal sprays. It is best controlled by RDI practices. A 2001 study showed that by cutting back irrigation 
to 50 percent of the trees’ water requirements between June 1 to July 31 (70 percent regulated) or July 1 to 
July 15 (85 percent regulated), hull rot was substantially reduced as evidenced by fewer dead leaf clusters 
and fewer dead spurs and branches (Teviotdale et al., 2001). Such mild to moderate water stress results in 
drier hull conditions, making trees less vulnerable to fungal attack. Many almond growers in the San Joaquin 
Valley have adopted RDI practices to help synchronize hull split timing and reduce potential for hull rot. To 
monitor the degree of tree stress, these growers have implemented the University of California 
recommendation of trying to maintain a stem water potential between -14 to -16 bars using pressure 
chambers by drying down the soil rootzone (B. Sanden, Personal communication, April 5-6, 2020). The more 
negative the number, the more stress the tree experiences. It could take between one to six weeks to achieve 
this stress level, depending on soil type and irrigation systems (B. Lampinen, personal communication, April 
7, 2020). Growers should take care to not to stress trees too much because that could compromise kernel 
size as kernels continue to grow at the onset of hull split (Doll and Shackel, 2015). After almond harvest, 
irrigation is critical to maximize floral bud development for the subsequent season.  

During the RDI period when there is no effective leaching, irrigation application is reduced to 50 percent of 
the tree water requirement, and some additional salts and chlorides accumulate in the rootzone. Absent 
leaching, the steady-state model breaks down because the salt content in the applied water would need to be 
zero to maintain the same rootzone salinity. In this situation, preseason irrigation management should target 
an adjusted soil salinity to maintain the appropriate soil salinity thresholds and avoid crop injury.  

Regulated Deficit Irrigation Analysis 
The RDI analysis applied a predictive model based on timing of flowering to estimate hull split for various 
types of almond varieties in different parts of the Central Valley (UC Fruit & Nut Research & Information 
Center, 2020). From the model and historical California Irrigation Management Information System (CIMIS) 
data from the AEWSD weather station, hull split was determined to typically initiate around the end of June or 
beginning of July and, depending upon the variety, continue through mid-August (B. Sanden, personal 
communication, April 6, 2020). To account for potential variances in hull split initiation in the Friant Division, 
an 8-week period (July 1 to August 31) was assumed for this RDI analysis. Determination of water quality 
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thresholds during the RDI practices period, or Period 2, also considered effective rootzone depth, applied 
irrigation water quality, soil capacity, and irrigation requirements. The RDI analysis is considered to be 
conservative because: (1) rainfall was not considered; (2) surface irrigation was assumed, despite the fact 
that crops under high frequency drip irrigation (typical for most water districts in the Friant Division) are able 
to tolerate higher salinity for the same assumed LF; and (3) steady-state models typically overestimate 
rootzone salinity (Corwin and Grattan, 2018).   

The RDI analysis was completed for both EC and chloride. Salt accumulation was quantified as a percentage 
increase, and then rootzone and applied irrigation water thresholds (assuming 20 percent maintenance 
leaching) were adjusted to maintain maximum ECet or Cl-et through the season. Assuming steady-state 
leaching, the analysis targeted maintenance of rootzone salinity at soil salinity thresholds of 150 mg/L for 
chloride, and 1,500 μS/cm for EC, resulting in adjustments to Cl-w and ECw thresholds.  

The RDI calculation assumed the effective rootzone to be between three and five feet (UC Almond Rootzone 
Workgroup, 2015). Soil was considered to be at field capacity meaning that volumetric soil moisture content 
was 25 percent, based on monthly average ET or irrigation water requirements for mature almonds in Kern 
County during months of July and August, 9.5 inches and 8.8 inches, respectively (Sanden, personal 
communication, April 6, 2020; Goldhamer 2012). The RDI calculation included soil water concentration 
thresholds of 300 mg/L for Cl-sw, and 3,000 μS/cm for ECsw, or twice that of the thresholds expressed on a 
saturated soil paste basis.  

During the RDI period, water was assumed to be applied at 50 percent ETc. The total amount of irrigation 
water required for 100 percent irrigation application, in inches, was calculated but then halved to account for 
50 percent deficit irrigation. The amount of irrigation water during RDI periods was then multiplied by the 
irrigation water concentrations of salt and chloride to determine the percentage increase above the salt and 
chloride concentrations in the rootzone. Calculating the percentage increase of chloride in the rootzone 
meant first determining irrigation water and soil water amounts.  

For example, 50 percent of the total ET for July and August was 9.1 inches, and the total water in the 
effective rootzone was 15 inches (rootzone depth (5 ft, or 60 inches) * 25 percent water content = 1.25 feet, 
or 15 inches). The 15 inches of soil water had 300 mg/L chloride at the beginning of the RDI period. After 9.1 
inches of water was applied, adding salts to the soil water in the rootzone, the irrigation water concentration 
was 55 mg/L. The percentage of additional salt was determined by calculating the ratio of the salt added in 
the deficit irrigation water to that in the soil water, (9.1 inches x 55 mg/L) / (15 inches x 300 mg/L) = 11 
percent. If the salt level in the rootzone remained at critical soil threshold levels at the end of the RDI period, 
the Cl-e at the beginning of RDI period would have needed to be proportionally lower than the critical soil 
salinity threshold of 150 mg/L, such that the 150 mg/L threshold concentration would be achieved at the 
end of the season. Thus, the Cl-et is reduced to 122 mg/L and the corresponding Cl-w becomes 102 mg/L.   

WATER QUALITY THRESHOLDS 
This section presents the RDI analysis-based chloride and EC thresholds and proposed flexible thresholds for 
chloride, boron thresholds, turbidity and TSS thresholds, and SAR and sodium thresholds. 

Chloride and Electrical Conductivity Thresholds 
Tables 11a and 11b show the RDI analysis for a variety of applied irrigation water qualities for chloride and 
EC, respectively. In consideration of historical water quality data representative of Kern-Fan or CVC programs 
that currently introduce water into the FKC, as well as temporal water quality trends, an applied irrigation 
water threshold for the RDI period was selected to be 55 mg/L Cl-w. The Cl-w value of 55 mg/L during the RDI 
period correlated to an adjusted Cl-w of 102 mg/L for the remainder of the year, assuming a three-foot (36 
inch) effective rootzone – a conservative assumption as the effective rootzone is assumed to be three to five 
feet (Table 12a).  

The same logic described above for Cl-w thresholds was applied to determine RDI ECw and adjusted ECw 
thresholds. The chloride threshold for the RDI period (55 mg/L) was approximately 49 percent greater than 
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the average historical water quality of representative Kern-Fan programs for all year types during months of 
July and August (37 mg/L). The average ECw during July and August for all year types representative of Kern-
Fan programs was 300 μS/cm, and a 49 percent increase is 447 μS/cm. Rounding up, the RDI threshold for 
ECw is 500 μS/cm, and, in order to maintain an ECet of 1,500 μS/cm, the adjusted ECw for the remainder of 
the year was 1,000 μS/cm.  
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Table 11a. Regulated Deficit Irrigation Analysis for Chloride 

Cl-w 
(mg/L) 

Effective 
Rootzone (in) 

Sum ETc 
Average 

(in)1 

RDI 
% 

RDI 
Water 
(in) 

Rootzone 
Water (in)2 

% Cl- 
Increase 

Adjusted 
Cl-e 

Needed 
(mg/L) 

Adjusted 
Cl-w 

(mg/L) 

10 36 18.3 50% 9.2 9 3.4% 145 121 

10 60 18.3 50% 9.2 15 2.0% 147 122 

20 36 18.3 50% 9.2 9 6.8% 140 117 

20 60 18.3 50% 9.2 15 4.1% 144 120 

30 36 18.3 50% 9.2 9 10.2% 135 112 

30 60 18.3 50% 9.2 15 6.1% 141 117 

40 36 18.3 50% 9.2 9 13.6% 130 108 

40 60 18.3 50% 9.2 15 8.1% 138 115 

50 36 18.3 50% 9.2 9 16.9% 125 104 

50 60 18.3 50% 9.2 15 10.2% 135 112 

55 36 18.3 50% 9.2 9 18.6% 122 102 

55 60 18.3 50% 9.2 15 11.2% 133 111 
Notes: 
1 ETc averages from Sanden and Goldhamer based on water use of mature almond trees in Wasco area for July and August 

(Goldhamer and Girona 2012).  
2 Rootzone at field capacity is 25 percent by volume. 
Key: 
Cl- = chloride 
Cl-e = chloride concentration in saturated soil paste or rootzone chloride 
Cl-w = chloride concentration in applied irrigation water 
ETc = evapotranspiration or tree water use 
in = inches 
mg/L = milligrams per liter 
RDI = regulated deficit irrigation 

Table 11b. Regulated Deficit Irrigation Analysis for Electrical Conductivity 

ECW  
(μS/cm) 

Effective 
Rootzone (in) 

Sum ETc 
Average 

(in)1 

RDI 
% 

RDI 
Water 
(in) 

Rootzone 
Water (in)2 

% EC 
Increase 

Adjusted 
ECe Needed 

(μS/cm) 

Adjusted 
ECw 

(μS/cm) 

200 36 18.3 50% 9.2 9 6.8% 1,400 1,120 

200 60 18.3 50% 9.2 15 4.1% 1,440 1,150 

300 36 18.3 50% 9.2 9 10.2% 1,350 1,080 

300 60 18.3 50% 9.2 15 6.1% 1,410 1,130 

400 36 18.3 50% 9.2 9 13.6% 1,300 1,040 

400 60 18.3 50% 9.2 15 8.1% 1,380 1,100 

500 36 18.3 50% 9.2 9 16.9% 1,250 1,000 

500 60 18.3 50% 9.2 15 10.2% 1,350 1,080 

600 36 18.3 50% 9.2 9 20.3% 1,200 960 

600 60 18.3 50% 9.2 15 12.2% 1,320 1,050 
Notes: 
1 ETc averages from Sanden and Goldhamer based on water use of mature almond trees in Wasco area for July and August (Goldhamer and 

Girona 2012).  
2 Rootzone at field capacity is 25 percent by volume. 
Key: 
μS/cm = microsiemens per centimeter 
EC = electrical conductivity 
ECe = electrical conductivity of saturated soil paste or rootzone salinity 
ECw = electrical conductivity of applied irrigation water 
ETc = evapotranspiration or tree water use 
in = inches 
RDI = regulated deficit irrigation 
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By adjusting the Cl-e and ECe thresholds for non-RDI irrigation periods, LR volumes for the assumed 20 
percent leaching were adjusted by default, as LR is a function of the saturated soil paste concentration. 
Adjusted LR volumes and constituent thresholds affect the mitigation curve slope for each constituent. The 
adjusted curves for chloride and EC were plotted and were below the governing line, so the mitigation curve 
remained unchanged and further confirmed the conservative nature of the mitigation curve in ensuring that 
all constituents would be sufficiently mitigated.  

Chloride Threshold Flexibility 
In evaluating and comparing the developed, in-prism water quality thresholds with temporal water quality 
trends during Period 1 (March 1 to June 30), or prior to the RDI period (July 1 to August 31), observed 
average constituent concentrations were typically below the proposed thresholds. If water with lower 
constituent concentrations was applied to a crop for the first four months of the growing season, assuming 
that the rootzone concentration was properly maintained, the rootzone concentration would decrease below 
the threshold and, even with reductions in irrigation and LFs, could allow the application of higher irrigation 
water concentrations during the post-RDI period. The period following RDI, or Period 3 (September 1 to 
February 28), is often used for reclamation leaching; however, it is also the period in which new sources of 
water may be available for the Friant Division. Thus, having flexibility in the allowable irrigation water quality 
could be opportune for increasing supply reliability for the region.  

Based on the RDI analysis and evaluation of water quality temporal trends, the Guidelines define an 
alternative water quality threshold for chloride for Period 3 to provide flexibility for irrigation management. 
Determination of whether the alternative chloride threshold for Period 3 is applied is based on the average 
chloride concentration of the irrigation water during Period 1. The alternative value was developed 
considering historical, temporal water quality trends and applying a weighted average calculation to meet the 
targeted rootzone chloride threshold. If the average measured chloride concentration for Period 1 is less than 
or equal to 70 mg/L, the allowable chloride concentration threshold increases from 102 mg/L to 123 mg/L 
for Period 3. If the measured average chloride concentrations for Period 1 exceed 70 mg/L, the chloride 
threshold remains at 102 mg/L for Period 3. Figure 10 shows the proposed thresholds compared to the 
chloride water quality trends for CVC and California Aqueduct water sources by year type.  
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Key: 
Average = Average of all San Joaquin Index year types and excludes months where there is mixing.  
Cl-w = chloride concentration of applied irrigation water 
CVC = Cross Valley Canal 
Dry= Monthly average for San Joaquin Index year types dry and critical and excludes months where there is mixing.  
mg/L = milligrams per liter 
RDI = regulated deficit irrigation 
Wet = Monthly average for San Joaquin Index year types below normal, above normal, and wet and excludes months where there is mixing. 

Figure 10. Chloride water quality trends by source water and year type with proposed water quality thresholds 

Because the average water quality for Kern-Fan or CVC programs for Period 1 (March 1 to June 30) was 
approximately 30 mg/L (see Table 2), 70 mg/L was chosen as a midpoint between the adjusted Cl-w 
threshold determined in the RDI analysis and the average historic water quality. Using a weighted average 
approach, if 70 mg/L water was applied for the four months in Period 1, assuming an LR of 20 percent, the 
resulting Cl-e would be 84 mg/L. With the target weighted average for Cl-e  of 122 mg/L, the necessary Cl-e for 
Period 3, the six months post-RDI (September 1 – February 28) was determined using the following equation: 

84
𝑚𝑚𝑀𝑀
𝐿𝐿
∗  .4 + 𝐶𝐶𝐶𝐶 𝑒𝑒 ∗  .6 =  122 

The resulting Cl-e was 147 mg/L, correlating to a Cl-w of 123 mg/L with an assumed 20 percent LR. This 
approach was conservative in that observed chloride concentrations for Kern-Fan programs were significantly 
lower than 70 mg/L, and these calculations did not consider rainfall or any reclamation leaching applied in 
addition to the assumed 20 percent maintenance leaching. 

Note that adjusting the Cl-e thresholds for non-RDI irrigation periods (Period 1 and Period 3) would adjust the 
LR volumes for the assumed 20 percent leaching provided by the mitigation curve. Adjusted curves were 
plotted and it was confirmed that even with a reduced Cl-e, the established mitigation curve would provide 
adequate mitigation. 

Boron Thresholds 
Table 12 shows Bw thresholds for tree and vine crops above which injury occurs under differing irrigation 
management practices, or LF values of 10 and 20 percent. Grapes have a boron tolerance of 0.4 mg/L when 
the LF is between 10 to 25 percent (Grattan et al., 2015). The actual boron threshold tolerance range is 0.3-
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0.5 mg/L if one considers different combinations of the soil water threshold (Bsw) tolerance (0.5 - 0.75 mg/L) 
and LF (10 - 25%). 

The maximum in-prism water quality threshold for boron was set at 0.4 mg/L for all three irrigation periods 
(Periods 1, 2, and 3). Grapes were used as the representative crop for boron sensitivity because of their 
prevalence in the Friant Division, serving as a surrogate for other sensitive crop types, such as apricot, fig, 
and most citrus. The applied threshold assumed conventional irrigation with a LF of 10-25 and was used 
rather than the LR concept that was used in development of the mitigation curves. 

Table 12. Boron Tolerance of Various Crops  

CROP 
BORON CONCENTRATION OF APPLIED WATER (Bw) (mg/L) 

Leaching Fraction 10% Leaching Fraction 25% 
Alfalfa 2.0 2.8 
Apricot 0.4 0.4 

Asparagus 4.8 6.7 
Barley 1.4 1.9 

Bean (kidney, lima, mung) 0.4 0.6 
Bean, snap 0.5 0.6 
Beet, red 2.0 2.8 

Bluegrass, Kentucky 1.2 1.7 
Broccoli 0.5 0.6 
Cabbage 1.2 1.7 

Carrot 0.7 0.9 
Cauliflower 1.6 2.2 

Celery 3.8 5.3 
Cherry 0.4 0.4 

Clover, sweet 1.2 1.7 
Corn 1.2 1.7 

Cotton 3.1 4.3 
Cucumber 0.7 0.9 
Fig, Kadota 0.4 0.4 

Garlic 1.7 2.4 
Grape 0.4 0.4 

Grapefruit 0.4 0.4 
Lemon <0.3 <0.4 
Lettuce 0.6 0.8 

Note: Adapted from data in Grattan, S.R., F.J. Diaz, F. Pedrero and G.A. Vivaldi. 2015. Assessing the suitability of saline waste waters for irrigation 
of citrus: Emphasis on boron and specific ions interactions.  Agric Water Manag. 157:48-58. 

Key: 
mg/L = milligrams per liter 

In addition, the applied Bw threshold of 0.4 mg/L was far more conservative than those defined in literature 
by Ayers and Westcot (1985). This analysis indicated that Bsw could be used as protective irrigation water 
thresholds (Be) because of the complexities related to boron adsorption and equilibrium concentrations with 
the soil water. Historical water quality data also indicate that CVC or California Aqueduct water would be 
below this threshold.  

Turbidity and Total Suspended Solids Thresholds 
Turbidity and TSS are of concern to water users in the Friant Division. Turbidity and TSS are not agronomic 
constituents of concern, but elevated levels are problematic for water management infrastructure and 
facilities, specifically spreading and groundwater recharge basins. TSS and Turbidity are also less of a 
concern in water supplies introduced via the Intertie and apply more to water being introduced via gravity 
flow to the FKC during high-flow or flood events.  

The precedent for the defined thresholds was established under the environmental compliance 
documentation Final Initial Study/Negative Declaration for the Warren Act Contract and License and 
Operation and Maintenance Agreement to Introduce Floodwaters from Reclamation District 770 into the 
Friant-Kern Canal (DL770 Contract). As part of the agreement, water introduced into the FKC by Delta lands 
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Reclamation District 770 would not cause in-prism water quality to exceed 40 nephelometric turbidity units 
(NTU) of turbidity or more than 20 parts per million (ppm) of TSS (Delta Lands Reclamation District 770 
2017). These same thresholds are included in the Guidelines. 

The TSS and turbidity thresholds defined are based on operational and maintenance practices for spreading 
and groundwater recharge basins in the region. AEWSD has an allowable upper limit for TSS, 25 ppm, for 
water applied to spreading basins in their district (Bookman-Edmonston Engineering, Inc. 1972). A value of 
20 rather than 25 ppm is included in the document to be protective of this upper, allowable limit. Monitoring 
of TSS requires lab analysis of water quality samples and thus management cannot be done in real time, 
however turbidity can be measured with a handheld meter and can be done in real time. Although the 
numerical relationship between turbidity and TSS can be affected by water source location, seasonal timing, 
and flow velocities (Meozzi 2011), a generalized relationship between the two constituents was developed to 
facilitate real-time water quality management. The defined turbidity threshold of 40 NTU correlates with the 
20 ppm TSS value based on correlation analysis that AEWSD performed between 2011 and 2016.  

SAR and Sodium Thresholds 
The established SAR and sodium thresholds defined in the Guidelines are designed to be managed together. 
As detailed under the Agronomic Effects section, sodium by itself can be potentially problematic and cause 
direct toxicity to tree crops. However, because of the importance of adequate Ca2+ in the soil water as a 
means of stabilizing root cell membranes and maintaining selective ion uptake by tree crops, the sodium-
calcium ratio in the soil solution is often a better indicator of Na+ toxicity. Therefore, SAR of the applied 
irrigation water has been used as a surrogate for the sodium-calcium ratio. The general rule is an SAR less 
than 3 is not problematic. However an SAR threshold on its own was not acceptable to water managers and 
water users as there are concerns related to potential acute crop injuries due to observed spikes in sodium 
concentrations of applied irrigation water. A combination approach to sodium management was developed, 
where if the measured SAR value exceeds 3 and the measured sodium concentration exceeds 69 mg/L, 
introduced water would need to be managed. The SAR threshold of 3 is from Ayers and Westcot Table 1 and 
assumes surface irrigation. The sodium concentration threshold of 69 mg/L is also derived from Ayers and 
Westcot Table 1 and suggests that irrigation waters < 3 meq/L (69 mg/L) 2 is suitable for crops that are 
sprinkler irrigated. Crops that are sprinkler irrigated are more susceptible to salt damage than by other 
irrigation methods as sodium can accumulate in the leaves by direct foliar absorption in addition to root 
absorption processes. Surface and low-pressure irrigated crops (i.e.. drip and mini-sprinklers), on the other 
hand, can only accumulate sodium in leaves by root absorption and translocation. The defined thresholds are 
conservative as the assumed sprinkler irrigation and more salt-damaging method is not widely used for crops 
within the Friant Division, as growers tend to use more efficient, on-the-ground irrigation methods. 

The defined thresholds are designed to address sodium toxicities and although SAR is also used to assess 
the infiltration hazard (described previously), it assumed that given the wide range of observed SAR values 
relative to water supply source, growers already appropriately manage SAR through the application of 
gypsum to increase EC and maintain adequate infiltration.  

  

 
2 The value assumes that calcium and magnesium are both at or above 2 meq/L (40 mg/L Ca2+ and 24 mg/L Mg2+) where 
equivalent concentration of Ca2+ is greater or equal to Mg2+. It is further assumed that this condition is met as the protection of 
these divalent constituents is their presence in the rootzone soil water. Nearly all growers in the region apply amendments such 
as gypsum (CaSO4), and thus soil water concentrations would meet the criteria. (Maas and Grattan, 1999). 
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ACRONYMS AND ABBREVIATIONS 
 

Ad hoc Committee Ad hoc Water Quality Committee 

CVC Cross Valley Canal 

CVP Central Valley Project 

EC electrical conductivity 

FKC  Friant-Kern Canal 

Friant Contractor Friant Division long-term contractor 

Friant Division  Friant Division of the Central Valley Project 

FWA Friant Water Authority 

Guidelines Friant-Kern Canal Water Quality Policy Guidelines 

Ledger Friant Kern Canal Water Quality Ledger 

Policy Friant-Kern Canal Water Quality Policy 

Pool Section of the Friant-Kern Canal between Check Structures 

Reclamation U.S. Department of the Interior, Bureau of Reclamation 

RWA Recovered Water Account 

SJRRP San Joaquin River Restoration Program 

SOP Standard Operation Procedures 

URF  Unreleased Restoration Flow 
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PURPOSE  
This document describes the proposed standard operating procedures for implementing the Friant-Kern 
Canal Water Quality Ledger (Ledger) that is associated to the Guidelines for Accepting Water into the Friant-
Kern Canal (Guidelines). The concept for the Ledger was developed in late 2019 with the Ad hoc Water 
Quality Committee’s (Ad hoc Committee) Small Workgroup during development of the Guidelines. The Ledger 
determines the required mitigation for introducing water of lesser quality in the Friant-Kern Canal (FKC). An 
initial, proof-of-concept version of the Ledger included a calculation of the pump-in mitigation percentage, 
total volume of mitigation water to be added to the FKC, and distribution of mitigation water to affected water 
users. As the Guidelines move toward implementation and the Ledger is fully developed, it is important that 
the defined Ledger process integrates with Friant Water Authority’s (FWA) operations and accounting.  

This Standard Operating Procedures (SOP) document for implementing the Ledger is intended to serve two 
purposes: 

1) Define the complete process for pump-in project operations and agency (i.e., FWA and U.S. 
Department of the Interior, Bureau of Reclamation (Reclamation)) responsibilities relating to project 
approval, notification, mitigation water accounting, and reporting. 

2) Document Ledger calculation assumptions. 

PROCESS FOR IMPLEMENTING WATER 
QUALITY GUIDELINES  
The Guidelines identify the need to develop standard operating procedures for a mitigation program and its 
administration. The processes and procedures for FWA implementation and management of the Guidelines 
will directly impact Ledger development, including the assumptions and calculations within the Ledger tool 
itself. The process for the implementation of the Ledger as part of the Guidelines includes: 

• Approve pump-in projects.  

• Measure, report, and track pump-in water quality. 

• Collect pump-in project delivery data.  

• Calculate preliminary mitigation water distribution.  

• Final water accounting.  

• Report volumetric deliveries and balance to Reclamation. 
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Figure 1. Water Quality Guidelines Implementation Process 
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PUMP-IN PROJECT APPROVALS 
In consideration of the Ledger, a pump-in project (or program) is any project that introduces water into the 
FKC from a source other than Millerton Lake. Reclamation, with acknowledgement from FWA, provides the 
final approval for any pump-in project once the Warren Act Contract, other agreements, and environmental 
documentation is completed. Because the Warren Act Contract and environmental documentation for a 
pump-in project may have different effective durations, Reclamation will approve the necessary 
documentation to implement a pump-in project at the appropriate times. Each pump-in project will have a 
defined duration and maximum volume that can be introduced into the FKC. The pump-in project proponent 
will identify a point of contact who will work with FWA to coordinate required responsibilities outlined in the 
Guidelines. 

PUMP-IN PROJECT WATER QUALITY 
As described in Section B2 of the Guidelines, all waters discharged into the FKC must be tested at least 
annually. Pump-in projects that introduce a single source water quality and pump-in projects that bring water 
into the FKC via the Cross Valley Canal (CVC) will have different methods for collecting and reporting water 
quality data. 

Mitigation Percentage Determination 
Pump-in project water quality will be an input to the Ledger to determine the required mitigation water 
percentage and corresponding mitigation volume per pump-in project volume. Groundwater and CVC water 
quality are input to the Ledger at different frequencies as described below. 

Single-Source Pump-In Projects via the FKC – Single-source pump-in projects include projects with Warren 
Act Contracts that introduce surface water or banked groundwater into the FKC. Before an approved pump-in 
project begins, FWA will work with the proponent to collect water quality data for the potential introduced 
surface water or groundwater to determine the required mitigation water percentage to be applied to the 
volume moved through the FKC. The determination of the required mitigation percentage will be calculated 
using the Ledger. Collection of the water quality data will follow requirements outlined in the Guidelines for 
Accepting Water into the FKC. 

Pump-In Projects via the CVC - As described in Section B2 of the Guidelines, weekly water quality sampling 
will be performed by FWA during reverse flow pump-back operations and water quality data will be provided 
to Reclamation. Mitigation will be based on either the weekly average electrical conductivity (EC) 
concentrations measured continuously at the terminus of the FKC at the Kern River Check or the weekly grab 
samples collected from the CVC, whichever is deemed more appropriate by FWA. The CVC water quality 
conditions may represent multiple pump-in projects and will be updated in the Ledger at a greater frequency 
than once per year. FWA will coordinate with the pump-in project proponents regarding the required 
mitigation water percentage as determined by changes in water quality conditions.  

The Ledger will document the water quality conditions for all pump-in projects and calculate the required 
mitigation percentage for each. 

Ledger Calculations 
As described above, pump-in project water quality data will be input to the Ledger. For each pump-in project, 
the Ledger will calculate the required mitigation water percentage. FWA will communicate this mitigation 
percentage to pump-in project proponents prior to operation and introduction. 

Assumptions 
• Water quality conditions for each pump-in project will be measured at least once per year or at a set 

frequency agreed to in the Guidelines and/or the Pump-In Project Approval and will determine the 
required mitigation water percentage. 

• The Mitigation Percentage process follows the approach outlined in the Guidelines.  
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Friant-Kern Canal Water Quality Monitoring and Management 
All pump-in projects must adhere to the water quality monitoring requirements stipulated in the Guidelines. 
FWA will implement continuous, real-time monitoring of in-prism water quality conditions in the FKC and at 
the FKC/CVC Intertie during reverse flow pump-back operations. Continuous, in situ measurements of EC will 
provide real-time data on incremental water quality changes and mixing in the FKC and will assist in water 
quality threshold management. If water quality thresholds are exceeded, FWA shall incrementally direct 
pump-in project proponents to cease operations of pump-in projects in order of greatest mass loading of the 
critical water quality constituent until the water quality drops below defined thresholds. Furthermore, if water 
quality monitoring results show an exceedance of 80% of the threshold for any water quality constituents, 
weekly monitoring will occur until four consecutive grab samples show consistent water quality results. 

PUMP-IN PROJECT DELIVERY VOLUMES 
During a contract year in which a pump-in project will be operated, FWA will work with the pump-in project 
proponent to implement the requirements stipulated in the Guidelines. This includes the addition of 
mitigation water to the FKC consistent with the pump-in project water quality conditions and quantity 
delivered. Pump-in project forecasted deliveries, calculated projected mitigation water, and all coordination 
related to pump-in project operations will be completed on a weekly basis. 

Ledger Calculations 
FWA will coordinate with pump-in project proponents to obtain an estimated volume of water to be 
introduced and conveyed in the FKC. The required mitigation water volume for the pump-in project is 
assumed to be included as part of that estimated volume. FWA will calculate losses, when appropriate, based 
on the total volume of water to be introduced into the FKC. The mitigation volume will be based on the total 
volume minus the calculated losses. The Ledger uses the mitigation water percentage for each pump-in 
project based on measured water quality and the net pump-in project volume to determine the projected 
mitigation volume requirement. 

Assumptions 
• Mitigation volumes are calculated based on projected weekly volume of a pump-in project and verified 

using measured volumes at the end of each month. 

• Mitigation volumes are added to the FKC in real time with other pump-in project deliveries.  

• FWA will have weekly volume, or weekly average flow, projections from pump-in project proponents. 

PRELIMINARY MITIGATION DISTRIBUTION 
The Ledger will be used to distribute mitigation water volumes to the impacted Friant Division long-term 
contractors (Friant Contractors). As described in the Pump-In Project Delivery Volumes section, mitigation 
water is introduced into the FKC simultaneously with the pump-in project volume introduction. FWA will add 
weekly water order data to the Ledger to distribute the mitigation volume based on volumetric proportioning. 
The preliminary, weekly mitigation distribution will be used by the FWA for communication purposes only 
(i.e., as the best available estimate of end-of-month mitigation requirements when communicating internally 
and with Friant Contractors). The mitigation water distribution will be updated at the end of each calendar 
month based on quality-controlled delivery data.  

Ledger Calculations 
The FWA will input water order data into the Ledger to be used in the mitigation water distribution 
calculations. The Ledger will determine the average weekly mixing interface position based on the weekly 
volumes for periods during FKC pump-back operations. An option to manually set the mixing interface 
position will also be available in the Ledger. 
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Assumptions 
• Deliveries will be aggregated by Friant Contractor, and divided into pools, defined as the canal section 

between check structures. 

• The division of deliveries by a Friant Contractor that has turnouts in multiple pools will be based on 
historical deliveries. 

• Only Central Valley Project (CVP) (Class 1, Class 2, 215, and San Joaquin River Restoration Program 
(SJRRP) Recovered Water Account (RWA) and Unreleased Restoration Flow (URF)) deliveries for the 
Friant Contractors will be used to calculate the mitigation distribution. 

• The interface, or location along the FKC that receives water from both gravity and reverse flow, will be 
determined using a weekly mass balance. An option will also be included to manually define the 
interface. 

• The FKC Pool with the Interface will be assumed to be fully mixed with gravity and reverse flow. 

END OF MONTH WATER ACCOUNTING 
At the end of each month that a pump-in project is operating, the preliminary mitigation water distribution 
will be updated based on quality-controlled delivery data for both the pump-in project and Friant Contractors. 
The updated mitigation distribution volume will be shared with impacted Friant Contractors and included as 
part of their normal water accounting. The mitigation volume will be assumed to be the first water taken for 
their monthly deliveries. For pump-in project proponents that take more water than pump-in project delivery 
minus the mitigation volume, proponents will be assumed to make up that delivery with their CVP contract 
supply. For pump-in projects that end with water delivery to a Friant Contractor, adjustments for mitigation 
volumes are not needed. 

For pump-in projects that do not end with delivery to a Friant Contractor, there is potential need for a 
mitigation volume adjustment. For these pump-in projects, FWA will track pump-in project water introduced 
into the FKC and deliveries to the non-Friant Contractor. If the volume of mitigation water is not equal to the 
expected volume, FWA will contact the pump-in project proponent to either increase the mitigation volume or 
increase their own delivery.  

Ledger Calculations 
FWA will add quality-controlled data to the Ledger at the end of each calendar month. The Ledger will replace 
the preliminary data and recalculate the mitigation water distribution to determine the monthly volumes of 
mitigation delivery, pump-in project delivery, and CVP delivery. 

Assumptions 
• Mitigation water delivery to impacted Friant Contractors is the first water to be delivered. 

• If delivery to a pump-in project proponent exceeds pump-in project input to FKC minus the mitigation 
volume, the remainder will be accounted for as CVP delivery. 

FINAL WATER ACCOUNTING 
The end of the month water accounting will be provided to the Friant Contractors for confirmation and their 
use for accounting with Reclamation. Friant Contractors will clearly show mitigation on their accounting 
reports as a separate volume of water. As needed, Friant Contractors will work with Reclamation to revise 
reporting in a timely manner. Mitigation volumes should be rounded and reported as a whole number in acre-
feet.  

WATER QUALITY ANNUAL REPORTING 
The water quality for each year will be maintained in a database by FWA. The mitigation curve developed for 
the Ledger, as part of the Guidelines, uses relationships between water quality constituents of concern and 
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in-prism measurements of EC. At the conclusion of each year, the relationships will be updated with new 
water quality data collected during the year. The updated relationship will be shared with the Friant 
Contractors.  Reclamation may also propose and/or require modifications to the Guidelines in coordination 
with FWA. Additionally, the Guidelines may be re-evaluated if any of the following conditions occurs: 

• A future regulatory cost or equivalent fee is imposed on Friant Contractors and a portion of such fee 
can reasonably be attributed to the incremental difference of water quality conditions in the FKC. 

• When Friant Division Class 1 contract allocation is less than or equal to 25 percent, the Water Quality 
Advisory Committee will convene as outlined in Attachment A of the Guidelines. In these years, 
mitigation will be accounted for as presented in these Guidelines, but will be deferred to a mutually 
agreed to later date unless those responsible for the put and take mutually agree to put and take the 
mitigation in the critical year. All monitoring requirements will remain as presented in the Guidelines.   

• There is a significant, regulatory change or scientifically based justification and three out of the 
following five Friant Contractors agree and work with the Water Quality Advisory Committee to 
recommend a change: (1) Arvin-Edison Water Storage District, (2) Shafter Wasco Irrigation District, 
(3) Delano-Earlimart Irrigation District, (4) South San Joaquin Municipal Utility District, and (5) Kern-
Tulare Water District. 
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Special Project 
Summary Sheet 

Budget Sheet 
 
Project Title: Friant-Kern Canal Water Quality Guidelines 

 
Job Code: 6370 

 
Project Location: Friant-Kern Canal (entire 152 miles) 

 
Project Description: Friant Water Authority implementation and administration of the Friant-
Kern Canal (FKC) Water Quality Guidelines (Guidelines). The Guidelines include requirements 
of discharge of water into the FKC, monitoring and reporting requirements, management, 
mitigation, communications, and forecasting. 

 
Estimated Annual Project Costs (x1000): $189.4 
 
Materials and Laboratory 
The continuous, real-time sampling of electrical conductivity (EC) at each of the specified 
check structures requires FWA to install a total of fourteen (14) Seametrics CT2X conductivity 
meters in the canal, at each structure. Costs for purchase and installation of the real-time water 
quality monitoring equipment, including integration with IOS, are approximately $60,477 
($1,898 per unit cost and total of $33,905 for installation). It is assumed the useful life of a 
Seametrics CT2X conductivity meter is about 10 years at an interest rate of 3%. Additionally, 
FWA staff will maintain two (2) existing handheld Hanna DIST5 conductivity meters. Real-
time water quality monitoring equipment and handheld conductivity meters will be calibrated 
and maintained according to manufacturer recommendations. Costs for maintenance of 
equipment is estimated to be about 10% of the capital cost ($6,048 annually, shown as Item 5 in 
Table 1 below). 
 
Table 1 summarizes the annual materials and lab costs of each monitoring requirement. 
Specifically, the item numbers in Table 1 refer to the sample source/type item numbers 
presented in Attachment B – Monitoring Program Summary. Details regarding assumptions are 
outlined in the narrative following Table 1. 
 
Table 1: Materials and laboratory costs associated with monitoring activities. 

Item1 Description Estimated 
Annual Cost 

5 
Annual maintenance of equipment for continuous, real-
time sampling of electrical conductivity at each specified 
check structure 

$6,048 

6 Estimated exceedance testing $936 

8 Weekly testing at FKC-CVC Intertie during pump-back 
operations $23,788 

9 Testing during initiation of FKC-CVC Intertie pump-
back operations $11,490 

Materials and Lab Testing Subtotal: $42,262 
1 Item numbers refer to sample source/type item numbers presented in Attachment B. 
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Most requirements of the monitoring program (items 6 through 9 in Table 1) require FWA to 
collect samples and send them to labs for testing. Testing can include a full list of Tittle 22 
constituents in Table 1 of the Guidelines, the short list of constituents in Table 4 of the 
Guidelines, or single constituents. Testing costs can vary significantly by lab. To be 
conservative, it was assumed that testing for full Title 22 constituents would be $5,745, testing 
for the short list of constituents in Table 4 of the Guidelines would be $915, and testing for 
single constituents would be $59/constituent. 
 
For a given year, it was assumed that single constituents would exceed the thresholds for two 
months per year and would result in 16 tests annually (4 weekly tests for each month with an 
exceedance, and 4 weekly tests below the threshold after the exceedance). This results in a total 
cost of $936 for testing because of exceedances (item 6 in Table 1). Costs for EC testing during 
operations outages were not included as this will be done with the handheld units by FWA staff. 
It was assumed that pump-back operations would occur during 6 months of the year, which 
would require 26 samples of the full list of constituents in Table 4 of the Guidelines. This 
results in a total cost of $23,788 for testing because of pump-back operations (item 8 in Table 
1). Finally, it was assumed that full Title 22 testing due to initiation of pump-back operations or 
anticipated Cross Valley Canal operations that will impact water quality will occur two times 
per year and will cost $11,490. 
 
Annualized Capital Install and Replacement of Equipment Subtotal:  $7,090 
 
Annual Materials and Lab Testing Subtotal:     $42,262 
 
Friant Water Authority Staff 
For implementation of the Guidelines, the following activities will be required of FWA staff: 
 
• Maintain and calibrate conductivity meters on a bi-weekly basis  
• Perform water quality sampling during pump-in operations 
• Coordinate laboratory water quality testing  
• Coordinate with Friant Division Long-Term Contractors on water quality data monitoring 

and analysis 
• Manage water quality and operations database  
• Perform weekly water quality reporting and forecasting using FKC Water Quality Model 
• Perform weekly analysis to determine mitigation and distribution to respective Friant 

Division Long-Term Contractors using the FKC Water Quality Mitigation Ledger 
• Coordinate with U.S. Department of the Interior, Bureau of Reclamation’s South-Central 

California Area Office on water quality reporting, mitigation, and contractual 
requirements 

• Coordinate and facilitate FWA committee on water quality 
 
The annual cost for FWA Executive Team and Operations staff is estimated below: 

Executive Team (WRM)………104 hrs @$111.43/hr                                $11,589 
 Water Operations (Senior Engineer)………1664 hrs @$77.16/hr              $128,400 

 
Annual Staff Labor Subtotal:       $139,989 
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General Justification: The Board of Directors, at the request of the Water Quality Ad Hoc 
Committee requested that staff develop new water quality guidelines for non-Millerton water 
introduced into the FKC. This plan originally stemmed from the environmental compliance 
requirements of both the Long-Term Recapture and Recirculation Plan and the FKC Reverse 
Pump-back Project. 
 
Operating Impact: This estimate assumes implementation of the Guidelines will occur. 
Although the costs for finalizing the Guidelines, agreements, and environmental compliance 
will be applied separately, the administration and water quality monitoring outlined in the 
Guidelines will be applied to 6370. A portion of these costs will be reimbursed through a 
surcharge applied to those Friant contractors that introduce water into the FKC once the 
Guidelines are implemented. 
 
Cost Allocation: Costs for implementation and administration of the Policy will be paid 
initially by the subset of Friant Division Long-Term Contractors who pay for FKC O&M to the 
FWA and subsequently will be reimbursed by contractors that introduce water (Put) into the 
FKC (Contributor). The Contributor will pay a dollar per acre-foot ($/acre-foot[AF]) surcharge, 
or ‘Guidelines Surcharge,’ that will be credited back to the Friant Division Long-Term 
Contractors who pay for O&M to the FWA. The Guidelines Surcharge will be calculated by 
dividing the total annual costs incurred for administration of the Guidelines Program by the 
total annual deliveries of pump-in programs into the FKC. The Guidelines Surcharge will be 
applied to all introduced water even if it is not required to provide mitigation as defined in the 
Guidelines. Surcharge estimates can be provided for budgeting purposes on an annual basis. 
FWA will bill contractors for reimbursement of Guidelines Program costs based on actual 
volumes and costs incurred. 
 
Guidelines Surcharge Estimate: Current pump-in programs pump approximately 36.6 
thousand acre-feet (TAF) per year into the FKC based on recent 5-year average (2013-2018) as 
shown in Table 2. 
 
Table 2: Current Pump-In Program 5-year Average (2013-2018) 

Source Annual Average 
(TAF) 

Annual Maximum1 
(TAF) 

Sierra Water 17.8 344 

Groundwater 14.7 117 

CVC 4.1 149 

Total Annual Average 36.6 610 
1 Based on existing compliance and approvals and anticipated renewals. 

The potential annual maximum is much greater than the annual average; however, for purposes 
of setting an initial Guidelines Surcharge, an estimated 40 TAF per year of pump-ins is assumed 
to occur. This estimate includes the recent average of existing programs and anticipated 10% 
initial increase due to new programs or greater use of existing programs. 

 
Monitoring and lab costs can be allocated based on location or source of introduced water. It is 
assumed that all monitoring and lab costs associated with operations at the CVC Intertie will be 
allocated to a surcharge applied only to water being brought in from the CVC. All other 
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monitoring and lab costs (e.g., lab costs associated with exceedances) will be allocated to other 
pump-ins. Other costs (e.g., annual maintenance of equipment, staff time) would be allocated to 
all pump-ins via a surcharge base. 
 
Based on this approach, the estimated Guidelines Surcharge would average about $10.73 per 
AF for CVC Water and $3.88 per AF for other pumps ins. Each surcharge would increase 
about $0.70 per AF if the surcharge were to consider recovering CEQA compliance costs over 
10 years. The surcharge applied at the end of every year will be based on actual costs and 
deliveries, and methods for allocation can be reassessed every year by the Water Quality 
Advisory Committee. 
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Extraordinary Maintenance Projects 
Cost Summary 

 
Project Title: Friant Kern Canal Water Quality Program 

 
Project Location and Department: Friant-Kern Canal (entire 152 miles) / Operations 
Department 

 
Estimated Total Project Cost (x1000): $189.4 

 
Estimated Total Material Cost (Including Fuel Costs, x1000): $49.4 

 
Breakdown of Estimated Costs 

All costs outside of Friant staff costs for CEQA compliance are not covered as part of this  program 
cost budget. 

 
Materials and Laboratory 

Annualized Capital Install and Replacement of Equipment $7,090 
Annual Materials and Lab Testing $42,246 
 

 Subtotal: $49,336 
 

Regular Labor (Hours and Cost): 
Executive Team (WRM)………. 104 hrs @$111.43/hr                                $11,589 
 Water Operations (Senior Engineer)………1664 hrs @$77.16/hr              $128,400 

 
Subtotal: $139,989  

Total: $189,325 

Guidelines Surcharge (CVC) $10.73  per AF 

Guidelines Surcharge (All other) $4.58 per AF 
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